Answer:
Internally reversible is the answer.
Explanation:
Answer:
2
Explanation:
1. The dew is formed when the water vapor at the atmosphere contacts the leaves, which are at a low temperature, so, the vapor temperature decreases, and the liquid is formed. So, it's a gas to liquid change.
2. Ice cubes are at the solid-state, thus this transformation is solid to a liquid change.
3. The cold juice is at a low temperature, so when the water vapor of the air contacts with the glass, its temperature decreases, and its change to a liquid phase. So, it's a gas to liquid change.
4. The evaporated water from the Earth's surface goes to the atmosphere, and, at high altitudes, the temperature is low, so the water vapor condenses and the drops get closer together forming the clouds. So, it's a gas to a liquid change.
Answer:
30.17 × 10²³ atoms
Explanation:
Given data:
Number of moles of lead = 5.01 mol
Number of atoms = ?
Solution:
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
In given question:
1 mole = 6.022 × 10²³ atoms
5.01 mol × 6.022 × 10²³ atoms / 1 mol
30.17 × 10²³ atoms
Answer:
The balanced chemical equation:

Heat of combustion per gram of phenol is 32.454 kJ/g
Heat of combustion per gram of phenol is 3,050 kJ/mol
Explanation:

Heat capacity of calorimeter = C = 11.66 kJ/°C
Initial temperature of the calorimeter = 
Final temperature of the calorimeter = 
Heat absorbed by calorimeter = Q

Heat released during reaction = Q'
Q' = -Q ( law of conservation of energy)
Energy released on combustion of 1.800 grams of phenol = Q' = -(58.4166 kJ)
Heat of combustion per gram of phenol:

Molar mass of phenol = 94 g/mol
Heat of combustion per gram of phenol:

Atomic mass is the mass of a chemical element expressed in atomic mass units. Molar mass the mass of a given substance divided by its amount of substance in (mol) .