Answer:
d) carbon dioxide and water
The factors that affect geometry of a molecule are
> The number of bonding electron pairs around the central atom.
> The number of pairs of non-bonding ("lone pair") electrons around the central atom.
Answer:
ZnSO4 + 2LiNO3 → Zn(NO3)2 + Li2SO4
Explanation:
There's many resources on web that can assist you with this concept:
https://en.intl.chemicalaid.com/tools/equationbalancer.php
https://www.webqc.org/balance.php
Answer:
3.37 × 10²³ molecules
Explanation:
Given data:
Mass of C₆H₁₂O₆ = 100 g
Number of molecules = ?
Solution:
Number of moles of C₆H₁₂O₆:
Number of moles = mass/molar mass
Number of moles = 100 g/ 180.16 g/mol
Number of moles = 0.56 mol
Number of molecules:
1 mole contain 6.022 × 10²³ molecules
0.56 mol × 6.022 × 10²³ molecules /1 mol
3.37 × 10²³ molecules
Answer : The correct expression for equilibrium constant will be:
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Therefore, the correct expression for equilibrium constant will be, ![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)