Answer: 
Explanation:
We can solve this problem using the <u>Poiseuille equation</u>:
Where:
is the Volume flow rate
is the effective radius
is the length
is the difference in pressure
is the viscosity of blood
Solving:
Answer:

Explanation:
The magnitude of the magnetic force on the proton is given by:

where:
is the proton charge
is the proton velocity
is the magnetic field
is the angle between the direction of v and B
Substituting into the formula, we find

Answer:
3.67 N
Explanation:
From the question given above, the following data were obtained:
Charge of 1st object (q₁) = +15.5 μC
Charge of 2nd object (q₂) = –7.25 μC
Distance apart (r) = 0.525 m
Force (F) =?
Next, we shall convert micro coulomb (μC) to coulomb (C). This can be obtained as follow:
For the 1st object
1 μC = 1×10¯⁶ C
Therefore,
15.5 μC = 15.5 × 1×10¯⁶
15.5 μC = 15.5×10¯⁶ C
For the 2nd object:
1 μC = 1×10¯⁶ C
Therefore,
–7.25 μC = –7.25 × 1×10¯⁶
–7.25 μC = –7.25×10¯⁶ C
Finally, we shall determine the force. This can be obtained as follow:
Charge of 1st object (q₁) = +15.5×10¯⁶ C
Charge of 2nd object (q₂) = –7.25×10¯⁶ C
Distance apart (r) = 0.525 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
F = Kq₁q₂ / r²
F = 9×10⁹ × 15.5×10¯⁶ × 7.25×10¯⁶ / 0.525²
F = 3.67 N
Therefore, the force on the object is 3.67 N
Answer:
DNA ligase
Explanation:
DNA Ligase is the enzyme that binds fragments of DNA together by forming two phosphodiester bonds between the 3' hydroxyl end of one nucleotide with the 5' phosphate end of the other. This reaction requires the hydrolysis of ATP.
Motion depends on what your reference point is. So a good reference point is a tree or a sign, something that is not moving. So if the zebra is walking towards the tree he/she is getting closer to the tree, He/she is in motion. But if the zebra and the tree never get closer or farther apart the zebra is not in motion. HOPE THIS HELPED!! ;D