Answer:
Explanation:
Rotate it slowly to establish whether the spot moves. If it is broken, it will stay as it is. By rotating it the electrons' path to the centre of the screen will be tilted to another position by any external disturbing field.
Answer:
Image result for What do executive departments do?
Under Article II of the Constitution, the President is responsible for the execution and enforcement of laws created by Congress. Fifteen executive departments—each led by an appointed member of the President's Cabinet—carry out the day-to-day administration of the Federal Government.
Explanation:
The Cabinet and independent federal agencies are responsible for the day-to-day enforcement and administration of federal laws. ... Fifteen executive departments — each led by an appointed member of the President's Cabinet — carry out the day-to-day administration of the federal government.
Answer:
I only speak English
Explanation:
I'm sorry can you type it in English
Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system =
'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia = 
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to
.
From
'ω' =
ω
since
is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.
Answer:
The magnitude of magnetic field at given point =
×
T
Explanation:
Given :
Current passing through both wires = 5.0 A
Separation between both wires = 8.0 cm
We have to find magnetic field at a point which is 5 cm from any of wires.
From biot savert law,
We know the magnetic field due to long parallel wires.
⇒ 
Where
magnetic field due to long wires,
,
perpendicular distance from wire to given point
From any one wire
5 cm,
3 cm
so we write,
∴ 

![B =\frac{ 4\pi \times10^{-7} \times5}{2\pi } [\frac{1}{0.03} + \frac{1}{0.05} ]](https://tex.z-dn.net/?f=B%20%3D%5Cfrac%7B%204%5Cpi%20%5Ctimes10%5E%7B-7%7D%20%5Ctimes5%7D%7B2%5Cpi%20%7D%20%5B%5Cfrac%7B1%7D%7B0.03%7D%20%2B%20%5Cfrac%7B1%7D%7B0.05%7D%20%5D)

Therefore, the magnitude of magnetic field at given point = 