Answer:
a) F = 3.2 10⁻¹⁰ N
, b) v = 9.9 10⁷ m / s
Explanation:
a) The electric force is
F = q E
The electric field is related to the potential reference
V = E d
E = V / d
Let's replace
F = e V / d
Let's calculate
F = 1.6 10⁻¹⁹ 28 10³ / 1.4 10⁻²
F = 3.2 10⁻¹⁰ N
b) For this part we can use kinematics
v² = v₀ + 2 a d
v = √ 2 ad
Acceleration can be found with Newton's second law
e V / d = m a
a = e / m V / d
a = 1.6 10⁻¹⁹ / 9.1 10⁻³¹ 28 10³ / 1.4 10⁻²
a = 3,516 10⁻¹⁷ m / s²
Let's calculate the speed
v = √ (2 3,516 10¹⁷ 1.4 10⁻²)
v = √ (98,448 10¹⁴)
v = 9.9 10⁷ m / s
Answer:
See below
Explanation:
Vertical position = 45 + 20 sin (30) t - 4.9 t^2
when it hits ground this = 0
0 = -4.9t^2 + 20 sin (30 ) t + 45
0 = -4.9t^2 + 10 t +45 = 0 solve for t =4.22 sec
max height is at t= - b/2a = 10/9.8 =1.02
use this value of 't' in the equation to calculate max height = 50.1 m
it has 4.22 - 1.02 to free fall = 3.2 seconds free fall
v = at = 9.81 * 3.2 = 31.39 m/s VERTICAL
it will <u>also</u> still have horizontal velocity = 20 cos 30 = 17.32 m/s
total velocity will be sqrt ( 31.39^2 + 17.32^2) = 35.85 m/s
Horizontal range = 20 cos 30 * t = 20 * cos 30 * 4.22 = 73.1 m
Answer:
A. We have that radius r = 4.00m intensity I = 8.00 W/m^
total power = power/ Area ( 4πr2)= 8.00 w/m^2( 4π ( 4.00 m)2=1607.68 W
b) I = total power/ 4πr2= 8.00 W/m2 ( 4.00 m/ 9.5 m)2= 1.418 W/m2
c) E = total power x time= 1607 . 68 W x 1s= 1607.68 J