Just ignore why do u care
Answer: The first one
Explanation:
Because it’s the higher frequency
A fundamental article cannot be Accelerated
Change in speed = (acceleration) x (time)
4 minutes = 240 seconds
Change in speed = (40 m/s²) x (240 seconds)
Change in speed = <em>9,600 m/s</em>
What you're actually describing here is a car pulling 4 G's for 4 minutes, and ending up going 21,475 miles per hour.
The driver would definitely NOT get a speeding ticket, because nobody could catch him.
Also, his car would heat up and shoot flames from atmospheric friction.
(He could avoid this with some fancy steering, leave the atmosphere, and end up in low-Earth-orbit.)
Actually, I hope there's nobody in the car. His experience wouldn't be pretty.
Answer:
The speed of the stone when it is 4.66 m higher is 236.057 m/s.
Explanation:
Given the initial velocity and vertical distance, we can use the fourth kinematic equation (
) to find v final, or the v to the left of the equal sign. We know
(initial velocity) is 24.7 m/s, y (change in vertical distance) is 4.66 m, and a is another way to write g (acceleration due to gravity), or 9.8
.
From here you could plug in the values and solve for v final, but to make the solving process simpler, we can simplify the given equation, <em>then </em>plug in the known values.
To isolate v final, we can take the square root of
and do the same to the right side of the equation. Therefore, we can find v final with:
, where v initial is outside of the square root because it squared...
If we plug in the known values to the simplified equation, we get: 
The final answer is 236.057 m/s.