Answer:
Along the Atlantic and Gulf Coasts of Florida, the land surface is also sinking. If the oceans and atmosphere continue to warm, sea level along the Florida coast is likely to rise one to four feet in the next century. Rising sea level submerges wetlands and dry land, erodes beaches, and exacerbates coastal flooding.
Explanation:
Answer:
24.531 m
Explanation:
t = Time taken = 1.7 s
u = Initial velocity = 6.1 m/s
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a
Equation of motion

The initial height of the rock above the ground is 24.531 m
Answer:
42244138.951 m
Explanation:
G = Gravitational constant = 6.667 × 10⁻¹¹ m³/kgs²
r = Radius of orbit from center of earth
M = Mass of Earth = 5.98 × 10²⁴ kg
m = Mass of Satellite
The satellite revolves around the Earth at a constant speed
Speed = Distance / Time
The distance is the perimeter of the orbit

The Centripetal force of the satellite is balanced by the universal gravitational force

The radius as measured from the center of the Earth) of the orbit of a geosynchronous satellite that circles the earth is 42244138.951 m
Answer:
t = 1.77 s
Explanation:
The equation of a traveling wave is
y = A sin [2π (x /λ -t /T)]
where A is the oscillation amplitude, λ the wavelength and T the period
the speed of the wave is constant and is given by
v = λ f
Where the frequency and period are related
f = 1 / T
we substitute
v = λ / T
let's develop the initial equation
y = A sin [(2π / λ) x - (2π / T) t +Ф]
where Ф is a phase constant given by the initial conditions
the equation given in the problem is
y = 5.26 sin (1.65 x - 4.64 t + 1.33)
if we compare the terms of the two equations
2π /λ = 1.65
λ = 2π / 1.65
λ = 3.81 m
2π / T = 4.64
T = 2π / 4.64
T = 1.35 s
we seek the speed of the wave
v = 3.81 / 1.35
v = 2.82 m / s
Since this speed is constant, we use the uniformly moving ratios
v = d / t
t = d / v
t = 5 / 2.82
t = 1.77 s
The acceleration should 5.4 m/s^2