Answer:
$104.70
Step-by-step explanation:
The equation would be set up like this: 80.45 + 20.50(3) - 37.25. You started off with $80.45 in your bank account and deposited, or added, $20.50 every day on Tuesday, Wednesday and Thursday. That would mean you added $20.50 three times. Adding $80.45 + $20.50 + $20.50 + $20.50, simplified to $80.45 + $20.50(3) would get you $141.95 in total. Then, on Friday, you withdraw $37.25, getting the equation $141.95 - $37.25, leaving $104.70 for the weekend.
Answer:
7.36 cm²
Step-by-step explanation:
What is the area of a triangle whose base measures 3.2 centimeters and whose height is 4.6 centimeters.
The formula for the area of a triangle is given as:
1/2 × Base × Height
Base = 3.2 cm
Height = 4.6 cm
Hence,
Area of the triangle = 1/2 × 3.2 × 4.6
= 7.36 cm²
Answer:
Yes
Step-by-step explanation:
A rectangle can be scaled into a square + rhombus. The difficult part is a trapezoid. If you can scale the sides, then the answer will remain yes because you would just make the top side longer both ways to straighten it and shorten the side lines.
The acceleration of the particle is given by the formula mentioned below:

Differentiate the position vector with respect to t.
![\begin{gathered} \frac{ds(t)}{dt}=\frac{d}{dt}\sqrt[]{\mleft(t^3+1\mright)} \\ =-\frac{1}{2}(t^3+1)^{-\frac{1}{2}}\times3t^2 \\ =\frac{3}{2}\frac{t^2}{\sqrt{(t^3+1)}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7Bds%28t%29%7D%7Bdt%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5Csqrt%5B%5D%7B%5Cmleft%28t%5E3%2B1%5Cmright%29%7D%20%5C%5C%20%3D-%5Cfrac%7B1%7D%7B2%7D%28t%5E3%2B1%29%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%5Ctimes3t%5E2%20%5C%5C%20%3D%5Cfrac%7B3%7D%7B2%7D%5Cfrac%7Bt%5E2%7D%7B%5Csqrt%7B%28t%5E3%2B1%29%7D%7D%20%5Cend%7Bgathered%7D)
Differentiate both sides of the obtained equation with respect to t.
![\begin{gathered} \frac{d^2s(t)}{dx^2}=\frac{3}{2}(\frac{2t}{\sqrt[]{(t^3+1)}}+t^2(-\frac{3}{2})\times\frac{1}{(t^3+1)^{\frac{3}{2}}}) \\ =\frac{3t}{\sqrt[]{(t^3+1)}}-\frac{9}{4}\frac{t^2}{(t^3+1)^{\frac{3}{2}}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7Bd%5E2s%28t%29%7D%7Bdx%5E2%7D%3D%5Cfrac%7B3%7D%7B2%7D%28%5Cfrac%7B2t%7D%7B%5Csqrt%5B%5D%7B%28t%5E3%2B1%29%7D%7D%2Bt%5E2%28-%5Cfrac%7B3%7D%7B2%7D%29%5Ctimes%5Cfrac%7B1%7D%7B%28t%5E3%2B1%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%29%20%5C%5C%20%3D%5Cfrac%7B3t%7D%7B%5Csqrt%5B%5D%7B%28t%5E3%2B1%29%7D%7D-%5Cfrac%7B9%7D%7B4%7D%5Cfrac%7Bt%5E2%7D%7B%28t%5E3%2B1%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5Cend%7Bgathered%7D)
Substitute t=2 in the above equation to obtain the acceleration of the particle at 2 seconds.
![\begin{gathered} a(t=1)=\frac{3}{\sqrt[]{2}}-\frac{9}{4\times2^{\frac{3}{2}}} \\ =1.32ft/sec^2 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20a%28t%3D1%29%3D%5Cfrac%7B3%7D%7B%5Csqrt%5B%5D%7B2%7D%7D-%5Cfrac%7B9%7D%7B4%5Ctimes2%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%5C%20%3D1.32ft%2Fsec%5E2%20%5Cend%7Bgathered%7D)
The initial position is obtained at t=0. Substitute t=0 in the given position function.