Answer:
9.0 g/cm³
Explanation:
Density can be computed with the formula:

Where:
D = Density
M = Mass
V = Volume
In your problem we are given:
84 cm³ = volume
760 g = mass
So we just plug in our given into the formula:



The answer would then be:
9.0 g/cm³
Answer:
See explanation
Explanation:
A balanced chemical reaction equation has the same number of atoms of each element on both sides of the reaction equation.
Hence, for the reaction between KOH and H2SO4, the balanced chemical reaction equation is;
H2SO4(aq) + 2KOH(aq) ---------> K2SO4(aq) + 2H2O(l)
Complete ionic equation;
2H^+(aq) + SO4^2-(aq) + 2K^+(aq) +2OH^-(aq) -------> SO4^2-(aq) + 2K^+(aq) + 2H2O(l)
Net ionic equation;
2H^+(aq) + 2OH^-(aq) -------> 2H2O(l)
Glucose and Galactose both have the same molecular formula, C6H12O6, but in the body, galactose must be first converted to glucose to make energy. The difference<span> is their </span>structures
Answer:
2.7 × 10⁻⁴ bar
Explanation:
Let's consider the following reaction at equilibrium.
SbCl₅(g) ⇄ SbCl₃(g) + Cl₂(g)
The pressure equilibrium constant (Kp) is 3.5 × 10⁻⁴. We can use these data and the partial pressures at equilibrium of SbCl₅ and SbCl₃, to find the partial pressure at equilibrium of Cl₂.
Kp = pSbCl₃ × pCl₂ / pSbCl₅
pCl₂ = Kp × pSbCl₅ / pSbCl₃
pCl₂ = 3.5 × 10⁻⁴ × 0.17 / 0.22
pCl₂ = 2.7 × 10⁻⁴ bar
The density of the unknown material is 0.213 ml/g
<h3>
Apparent density of the unknown material</h3>
The apparent density of the unknown material is calculated as follows;
Volume of the unknown substance = 126 ml - 102 ml = 24 ml
Density of the unknown substance = mass/volume
Density of the unknown substance = 24 ml / 112.6 g
Density of the unknown substance = 0.213 ml/g
Thus, the density of the unknown material is 0.213 ml/g
Learn more about density here; brainly.com/question/6838128
#SPJ1