Answer:
1s22s22p6: Neon (Ne)
1s22s22p63s23p3: Phosphorous (P)
1s22s22p63s23p64s1: Potassium (K)
1s22s22p63s23p64s2(im not sure what 308 is supposed to be): Calcium (Ca)
1s22s22p63s23p64s23d104p65s24d3: there is no pure element that ends 4d3 that I know of so this can either be Zirconium(Zr) if it ends in 4d2 or Niobium (Nb) if it ends in 4d4
Explanation:
you can look at the periodic table and the trends to find the rough idea of where the electron configuration ends, there are helpful articles and images on these, i attached an image that may help. After that you can look at the atomic number to find the number of electrons for a pure element and use the electron subshell pattern thing to find the exact number
A net worth: $79.0 billion.
Value of stock : $3.20 billion.
New net worth:
$79.0 + $3.20 = $82.20 billion = $82.20 * 10^9 = $8.20 * 10^10
if you have 1mol of NO. how many molecules of NO are there
Answer:
6.02 x 10²³ molecules
Explanation:
Given parameters:
Number of moles of NO = 1 mole
Unknown:
Number of molecules in NO;
Solution:
A mole of compound contains the Avogadro's number of particles.
1 mole of a substance contains 6.02 x 10²³ molecules
So, 1 mole of NO contained 6.02 x 10²³ molecules
Answer:
Volume = 1222.5cm³
Explanation:
<em>If the question is about the volume of the rectangle:</em>
The volume of a rectangle is obtained by the multiplication of its 3 dimensions: Length, width, height.
In the problem, the length of the rectangle is 0.162m = 16.2cm
The width is 7.7cm
And the height is 9.8cm
The volume is:
Volume = 16.2cm*7.7cm*9.8cm
<h3>Volume = 1222.5cm³</h3>
Answer:
B. Particles of matter have spaces between them.
Explanation:
The particle nature model of matter is an model used to explain the properties and nature of matter. The statements of the particle nature model of matter are as follows :
1. Matter is made of small particles of atoms or molecules.
2. The particles of matter have space between them. The spaces between the particles are least in solids as they are closely packed together but are greatest in gases whose particles are far apart from each other.
3. The particles of matter are in constant motion at all times. Solids particles are not free to move due to strong molecular forces between the particles, but are constantly vibrating in their mean positions. Liquid particles free to move due to lesser molecular forces while gas molecules which have negligible intermolecular forces have the greatest ability to move.
4. The particles of matter are attracted to each other by intermolecular forces. These forces are greatest in solids and least in gases.
The correct option is B.