The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
Answer:
1.4952 grams of sodium bicarbonate she would need to ingest to neutralize this much HCl.
Explanation:

Moles of hydrochloric acid = n
Volume of hydrochloric acid solution = 200.0 mL = 0.200 L
Molarity of the hydrochloric acid = 0.089 M
of HCL

According to reaction, 1 mole of HCl is neutralized by 1 mole of sodium bicarbonate.
Then 0.0178 moles of HCl wil be neutralized by :
of sodium bicarbonate
Mass of 0.0178 moles of sodium bicarbonate:
0.0178 mol × 72 g/mol = 1.4952 g
1.4952 grams of sodium bicarbonate she would need to ingest to neutralize this much HCl.
$14.00
fee for a Law and rule book
I believe the answer is 3 - He hypothesized that all substances can be broken down into a smallest part called the atom.