<span>The pressure inside a coke bottle is really high. This helps keep the soda carbonated. That is, the additional pressure at the surface of the liquid inside the bottle forces the bubbles to stay dissolved within the soda. </span><span>When the coke is opened, there is suddenly a great pressure differential. The initial loud hiss that is heard is this pressure differential equalizing itself. All of the additional pressure found within the bottle pushes gas out of the bottle until the pressure inside the bottle is the same as the pressure outside the bottle. </span><span>However, once this occurs, the pressure inside the bottle is much lower and the gas bubbles that had previously been dissolved into the soda have nothing holding them in the liquid anymore so they start rising out of the liquid. As they reach the surface, they pop and force small explosions of soda. These explosions are the source of the popping and hissing that continues while the soda is opened to the outside air. Of course, after a while, the soda will become "flat" when the only gas left dissolved in the liquid will be the gas that is held back by the relatively weak atmospheric pressure.</span>
Eukaryotic cells, the theoretical maximum yield of ATP generated per glucose is 36 to 38, depending on how the 2 NADH generated in the cytoplasm during glycolysis enter the mitochondria and whether the resulting yield is 2 or 3 ATP per NADH
Answer:
Explanation:
Oleic acid originates from an unsaturated fatty acid with 18 carbon atoms and one double bond, which can be found in olive oil and many other vegetable and animal oils and fats. Its economic importance includes the production of soap making and cosmetics etc.
The line-bond structure of the given oleic acid in the question can be found in the attached below.
1 mmol --------------------- 1000 <span>µmol
( mmol ) -------------------- </span> 38231 µmol
mmol = 38231*1 / 1000
mmol = 38231/ 1000
=> 38.231 mmol