Answer:
0.109 g.
Explanation:
Equation of the reaction:
Na3PO4 + 3HCl --> 3NaCl + H3PO4
Number of moles of HCl = molar concentration × volume
= 0.1 × 0.04
= 0.004 mol.
By stoichiometry, 1 mole of Na3PO4 neutralises 3 moles of HCl. Therefore, number of moles of Na3PO4 = 0.004/3
= 0.0013 mol
Mass of Na3PO4 = molar mass × number of moles
= 0.0013 × 164
= 0.219 g
Since 50% of Na3PO4 was present in the sample. Let 100 g be the total mass of the substance
= 0.219 × 50 g/100 g
= 0.109 g.
Explanation:
9.0122 g be Maybe, sorry i don't think so
Answer:
10.4376 g
Explanation:
First we <u>calculate the sum of the weighings</u>:
- 10.4375 g + 10.4381 g + 10.4373 g + 10.4376 g = 41.7505 g
Then we <u>divide the sum by the number of weighings to calculate the average:</u>
- Average = Sum of weighings / Number of weighings
- 41.7505 g / 4 = 10.4376 g
Answer:
11.45kcal/g
2.612 × 10³ kcal
Explanation:
When a compound burns (combustion) it produces carbon dioxide and water. The combustion of 2-methylheptane can be represented by the following balanced equation:
2 C₈H₁₈ + 25 O₂ ⇄ 16 CO₂ + 18 H₂O
It releases 1.306 × 10³ kcal every 1 mol of C₈H₁₈ that is burned.
<em>What is the heat of combustion for 2-methylheptane in kcal/gram?</em>
We know that the molar mass of C₈H₁₈ is 114.0g/mol. Then, using proportions:

<em>How much heat will be given off if molar quantities of 2-methylheptane react according to the following equation? 2 C₈H₁₈ + 25 O₂ ⇄ 16 CO₂ + 18 H₂O</em>
In this equation we have 2 moles of C₈H₁₈. So,
