Answer:
See explanation
Explanation:
If the spot in TLC is below the solvent front, it will be observed that the spot, instead of being separated by the solvent as expected, will just dissolve away in the solvent and zero actual separation of the mixture is achieved.
If the solute is dissolved away instead of being separated by the solvent, then the experiment fails because no actual separation of the mixture is achieved.
Hence, in TLC, the spot must be applied above the solvent front so that the capillary movement of the solvent through the plate can lead to the eventual separation of the components of the mixture since the various components of the mixture will travel at different speeds through the plate.
Also, if the solvent is above the spot, the solvent may evaporate selectively from the points above the spot while separation is ongoing.
Answer:
A formula unit indicates the lowest whole number ratio of ions in an ionic compound. Because the positively and negatively charged ions in an ionic compound are arranged in a crystal lattice, there is no discrete particle comparable to a molecule.
Explanation:
1.123 nano-grams is your answer, do you understand now gimme dat 5 star and brainiest
One mole of oxygen gas, which has the formula O2, has a mass of 32 g and contains 6.02 X 1023 molecules of oxygen but 12.04 X 1023 (2 X 6.02 X 1023) atoms, because each molecule of oxygen contains two oxygen atoms.
<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of iron and copper (II) sulfate is given as:

Ionic form of the above equation follows:

As, sulfate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.