Answer:
they are equal
Explanation:
the Law of Conservation of Mass states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change
Answer:
The reaction will be spontaneous
Explanation:
To determine if the reaction will be spontaneous or not at this temperature, we need to calculate the Gibbs's energy using the following formula:
<u>If the Gibbs's energy is negative, the reaction will be spontaneous, but if it's positive it will not.</u>
Calculating the :
Now, other factor we need to determine is the sign of the S variation. When talking about gases, the more moles you have in your system the more enthropic it is.
In this reaction you go from 7 moles to 8 moles of gas, so you can say that you are going from one enthropy to another higher than the first one. This results in:
If the variation of S is positive, the Gibbs's energy will be negative always and the reaction will be spontaneous.
Answer:
Vapour pressure of benzene over the solution is 253 torr
Explanation:
According to Raoult's law for a mixture of two liquid component A and B-
vapour pressure of a component (A) in solution =
vapour pressure of a component (B) in solution =
Where are mole fraction of component A and B in solution respectively
are vapour pressure of pure A and pure B respectively
Here mole fraction of benzene in solution is 0.340 and vapour pressure of pure benzene is 745 torr
So, vapour pressure of benzene in solution =
= 253 torr
Balanced equation: 2Na(s) + Cl₂(g) ---> 2NaCl(s)
when we have STP conditions, we can use this conversion: 1 mol = 22.4 L
first, we have to convert grams to molecules using the molar mass, and then use mole to mole ratio from the balanced equation.
molar mass of Na= 23.0 g/mol
ratio: 2 mol Na= 1 mol Cl₂ (based on coefficients of balanced equation)
calculations: