It should be increasing the rate of the forward reaction will cause a shift to the left because the external stress, which is the increase in rate, will cause the reaction to be unbalanced, and to reach equilibrium it needs to shift to the right.
Answer: E
=
1.55
⋅
10
−
19
J
Explanation:
The energy transition will be equal to 1.55
⋅
10
−
1
J
.
So, you know your energy levels to be n = 5 and n = 3. Rydberg's equation will allow you calculate the wavelength of the photon emitted by the electron during this transition
1
λ =
R
⋅
(
1
n
2
final −
1
n
2
initial )
, where
λ
- the wavelength of the emitted photon;
R
- Rydberg's constant - 1.0974
⋅
10
7
m
−
1
;
n
final
- the final energy level - in your case equal to 3;
n
initial
- the initial energy level - in your case equal to 5.
So, you've got all you need to solve for λ
, so
1
λ =
1.0974
⋅10 7
m
−
1
⋅
(....
−152
)
1
λ
=
0.07804
⋅
10
7
m
−
1
⇒
λ
=
1.28
⋅
10
−
6
m
Since
E
=
h
c
λ
, to calculate for the energy of this transition you'll have to multiply Rydberg's equation by
h
⋅
c
, where
h
- Planck's constant -
6.626
⋅
10
−
34
J
⋅
s
c
- the speed of light -
299,792,458 m/s
So, the transition energy for your particular transition (which is part of the Paschen Series) is
E
=
6.626
⋅
10
−
34
J
⋅
s
⋅
299,792,458
m/s
1.28
⋅
10
−
6
m
E
=
1.55
⋅
10
−
19
J
I dont know the others. hahah