Answer: electronic configuration
Explanation:
Toichiometry time! Remember to look at the equation for your molar ratios in other problems.
31.75 g Cu | 1 mol Cu | 2 mol Ag | 107.9 g Ag 6851.65⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ → ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ = 107.9 g Ag ∅ | 63.5 g Cu | 1 mol Cu | 1 mol Ag 63.5
There's also a shorter way to do this: Notice the molar ratio from Cu to Ag, which is 1:2. When you plug in 31.75 into your molar mass for Cu, it equals 1/2 mol. That also means that you have 1 mol Ag because of the ratio, qhich you can then plug into your molar mass, getting 107.9 as well.
Phosphoric acid. Also known as orthophosphoric acid in or phosphoric(V) acid, is a weak acid with the chemical formula H3PO4. The pure compound is a colorless solid.
Answer:
.
Explanation:
Consider the oxidation state on each of the element:
Left-hand side:
- O: -2 (as in most compounds);
- Cr:
; - Fe: +2 (from the charge of the ion);
Right-hand side:
Change in oxidation state:
- Each Cr atom: decreases by 3 (reduction).
- Each Fe atom: increases by 1 (oxidation).
Changes in oxidation states shall balance each other in redox reactions. Thus, for each Cr atom on the left-hand side, there need to be three Fe atoms.
Assume that the coefficient of the most complex species
is 1. There will be two Cr atoms and hence six Fe atoms on the left-hand side. Additionally, there are going to be seven O atoms.
Atoms are conserved in chemical reactions. As a result, the right-hand side of this equation will contain
- two Cr atoms,
- six Fe atoms, and
- seven O atoms.
O atoms seldom appear among the products in acidic environments; they rapidly combine with
ions to produce water
. Seven O atoms will make seven water molecules. That's fourteen H atoms and hence fourteen
ions on the product side of this equation. Hence the balanced equation. Double check to ensure that the charges on the ions also balance.
.