Answer 15m
Explanation: Distance = Speed x Time
3 x 5 =15
Speific heat capacity is measured with the aid of determining how a whole lot warmth electricity is needed to increase one gram of a substance one digree Celsius. The Speific heat capacity of water is 4.2 joules per gram per degree Celsius or 1 calorie in step with gram per digree Celsius.
The specific heat capacity is defined as the amount of heat (J) absorbed consistent with unit mass (kg) of the substance while its temperature increases 1 ok (or 1 °C), and its units are J/(kg k) or J/(kg °C).
Factors specific heat capacity relate to are temperature and strength.
The Speific heat capacity C can be measured as q = mC∆T
Or, C = q/m∆T
where,
C is the specific heat capacity
q is the quantity of heat required
m is the mass
∆T is the change in temperature
As a consequence so as to degree the specific heat capacity we need to recognize mass of the substance, quantity of heat lost or gain by the substance and the exchange in temperature.
Lear more about Speific heat capacity here: brainly.com/question/17162473
#SPJ4
The value of log₂(x/4) is 22. Using the properties of the logarithm, the required value is calculated.
<h3>What are the required properties of the logarithm?</h3>
The required logarithm properties are
logₐx = n ⇒ aⁿ = x; and logₐ(xⁿ) = n logₐ(x);
Where a is the base of the logarithm.
<h3>Calculation:</h3>
It is given that,
log₄(x) = 12;
On applying the property logₐx = n ⇒ aⁿ = x; here a = 4;
So,
log₄(x) = 12 ⇒ 4¹² = x
⇒ x = (2²)¹² = 2²⁴
Then, calculating log₂(x/4):
log₂(x/4) = log₂(2²⁴/4)
= log₂(2²⁴/2²)
= log₂(2²⁴ ⁻ ²)
= log₂(2²²)
On applying the property logₐ(xⁿ) = n logₐ(x);
log₂(x/4) = 22 log₂2
We know that logₐa = 1;
So,
log₂(x/4) = 22(1)
∴ log₂(x/4) = 22.
Learn more about the properties of logarithm here:
brainly.com/question/12049968
#SPJ9
Mercury expands when it is heated. This process is called thermal expansion.
Answer:
A noncompetitive inhibitor can only bind to an enzyme with or without a substrate at several places at a particular point in time
Explanation:
this is because It changes the conformation of an enzyme as well as its active site, which makes the substrate unable to bind to the enzyme effectively so that the efficiency of the enzyme decreases. A noncompetitive inhibitor binds to the enzyme away from the active site, altering/distorting the shape of the enzyme so that even if the substrate can bind, the active site functions less effectively and most of the time also the inhibitor is reversible