This uses the concept of freezing point depression. When faced with this issue, we use the following equation:
ΔT = i·Kf·m
which translates in english to:
Change in freezing point = vant hoff factor * molal freezing point depression constant * molality of solution
Because the freezing point depression is a colligative property, it does not depend on the identity of the molecules, just the number of them.
Now, we know that molality will be constant, and Kf will be constant, so our only unknown is "i", or the van't hoff factor.
The van't hoff factor is the number of atoms that dissociate from each individual molecule. The higher the van't hoff factor, the more depressed the freezing point will be.
NaCl will dissociate into Na+ and Cl-, so it has i = 2
CaCl2 will dissociate into Ca2+ and 2 Cl-, so it has i = 3
AlBr3 will dissociate into Al3+ and 3 Br-, so it has i = 4
Therefore, AlBr3 will lower the freezing point of water the most.
Electrons uniting with electrons of another atom is the cause in this relationship. The effect is a chemical change.
Answer:
The chemical equation by putting, a 2 on C₅H₁₂O, 15 on O₂, 10 on CO₂ , and 12 on H₂O in the equation;
2C₅H₁₂O + 15O₂ → 10CO₂ + 12H₂O
Explanation:
- Chemical equations are balanced by putting coefficients on the reactants and products to ensure the total number of atoms on the left side equal to those on the right side.
- Balancing chemical equations is done to make chemical equations obey the law of conservation of mass.
- According to the law of conservation of mass, the mass of the reactants should always be equal to the mass of products.
- This is done by balancing chemical equations to ensure the total number of atoms on the left side is equal to that on the right side.
- Therefore, the balanced equation is;
2C₅H₁₂O + 15O₂ → 10CO₂ + 12H₂O
Answer: A and D, I believe
Explanation: