Answer:

Explanation:
Hess's Law of Constant Heat Summation states that if a chemical equation can be written as the sum of several other chemical equations, the enthalpy change of the first chemical equation is equal to the sum of the enthalpy changes of the other chemical equations. Thus, the reaction that involves the conversion of reactant A to B, for example, has the same enthalpy change even if you convert A to C, before converting it to B. Regardless of how many steps it takes for the reactant to be converted to the product, the enthalpy change of the overall reaction is constant.
With Hess's Law in mind, let's see how A can be converted to 2C +E.
(Δ
) -----(1)
Since we have 2B, multiply the whole of II. by 2:
(2Δ
) -----(2)
This step converts all the B intermediates to 2C +2D. This means that the overall reaction at this stage is
.
Reversing III. gives us a negative enthalpy change as such:
(-Δ
) -----(3)
This step converts all the D intermediates formed from step (2) to E. This results in the overall equation of
, which is also the equation of interest.
Adding all three together:
(
)
Thus, the first option is the correct answer.
Supplementary:
To learn more about Hess's Law, do check out: brainly.com/question/26491956
Answer:
Point A
Explanation:
The Northern Hemisphere is furthest away from the sun in position A. Therefore the sunlight takes longer to reach the Earth which results in the Northern Hemisphere experiencing winter.
Answer:
This part require data such as Avogadro's number and the molar mass of water. But first, let's find the mass of water in the specified volume by making use of the density formula:
Density = mass/volume
1 g/mL = Mass/70 mL
Mass = 70 g
Each water contains 18 grams per mole, and each mole contains 6.022×10²³ molecules of water. Thus,
70 g * 1mole/18 g * 6.022×10²³ molecules/mole = 2.342×10²⁴ molecules of water
Explanation:
Answer:
Redox reaction and single displacement
Explanation:
This reaction is first of all a redox reaction. A redox reaction is a reaction that involves both oxidation and reduction. Oxidation involves increase in oxidation number while reduction involves decrease in oxidation number.
Copper (Cu) had an oxidation number of "0" as a reactant but had an oxidation number of "2+" in the product [Cu(NO₃)₂] hence oxidation occurred.
Nitrogen (N) had an oxidation number of "5+" in the reactant (HNO₃) but had an oxidation number of "4+" in the product (NO₂) hence reduction also occurred.
Also, from the reaction, it can be deduced that copper (Cu) displaced hydrogen (H) from the nitric acid (HNO₃) solution to form copper (II) nitrate [Cu(NO₃)₂]. It should be noted that copper can displace hydrogen because it is higher than hydrogen in the electrochemical series. Hence, this reaction can also be called a single displacement reaction. A single displacement reaction is a reaction in which an atom of an element replaces another atom in a compound (as seen in the equation given in the question).
Answer:
The correct option is 1, since by changing the partial pressures the gas pressures change, the gases go from the zones of higher partial pressure to the zones of lower partial pressure, an example of this is the homeostasis of the human pulmonary alveolus in gas exchange with CO2 and O2.
Explanation:
In the first it increases, in the second the volume is maintained, and in the third reaction it decreases.