Answer
pH=8.5414
Procedure
The Henderson–Hasselbalch equation relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, Kₐ. In this equation, [HA] and [A⁻] refer to the equilibrium concentrations of the conjugate acid-base pair used to create the buffer solution.
pH = pKa + log₁₀ ([A⁻] / [HA])
Where
pH = acidity of a buffer solution
pKa = negative logarithm of Ka
Ka =acid disassociation constant
[HA]= concentration of an acid
[A⁻]= concentration of conjugate base
First, calculate the pKa
pKa=-log₁₀(Ka)= 8.6383
Then use the equation to get the pH (in this case the acid is HBrO)
Answer:
MnO4 + 4 H2C2O4 = Mn + 8 CO2 + 4 H2O
There are 76 atoms in total
Answer:
b) 5.87 E23 molecules
Explanation:
∴ mm SO3 = 80.066 g/mol
⇒ molecules SO3 = (78.0 g)(mol/80.066 g)(6.022 E23 molec/mol)
⇒ molec SO3 = 5.866 E23 molecules SO3