Answer:
1) When 69.9 g heptane is burned it releases 5.6 mol water.
2) C₇H₁₆ + 11O₂ → 7CO₂ + 8H₂O.
Explanation:
- Firstly, we should balance the equation of heptane combustion.
- The balanced equation is: <em>C₇H₁₆ + 11O₂ → 7CO₂ + 8H₂O.</em>
This means that every 1.0 mole of complete combustion of heptane will release 8 moles of H₂O.
- We need to calculate the no. of moles in 69.9 g of heptane that is burned using the relation: <em>n = mass/molar mass.</em>
n of 69.9 g of heptane = mass/molar mass = (69.9 g)/(100.21 g/mol) = 0.697 mol ≅ 0.7 mol.
<em><u>Using cross multiplication:</u></em>
1.0 mol of heptane releases → 8 moles of water.
0.7 mol of heptane releases → ??? moles of water.
<em>∴ The no. of moles of water that will be released from burning (69.9 g) of water</em> = (0.7 mol)(8.0 mol)/(1.0 mol) = <em>5.6 mol.</em>
<em>∴ When 69.9 g heptane is burned it releases </em><em>5.6</em><em> mol water. </em>
<em />
150 g SO₂ = 2.36 mol SO₂
M_r = 32.06 + 2×16.00 = 32.07 + 32.00 = 64.06
Moles of SO₂ = 151 g SO₂ × [1 mol SO₂/64.06 g SO₂] = 2.36 mol SO₂
When the guard cell is filled with water and it becomes turgid, the outer wall balloons outward, drawing the inner wall with it and causing the stomate to enlarge.
no the best source is blood.