<h3>
Answer:</h3>
Initial temperature is 243.59°C
<h3>
Explanation:</h3>
The quantity of heat is calculated by multiplying the mass of a substance by its specific heat capacity and change in temperature.
That is; Q = m×c×ΔT
In this case;
Quantity of heat = 560 J
Mass of the Sample of Zinc = 10 g
Final temperature = 100°C
We are required to determine the initial temperature;
This can be done by replacing the known variables in the formula of finding quantity of heat,
Specific heat capacity, c, of Zinc = 0.39 J/g.°C
Therefore,
560 J = 10 g × 0.39 J/g°C × ΔT
ΔT = 560 J ÷ (3.9 J/°C)
= 143.59°C
But, since the sample of Zinc lost heat then the temperature change will have a negative value.
ΔT = -143.59°C
Then,
ΔT = T(final) - T(initial)
Therefore,
T(initial) = T(final) - ΔT
= 100°C - (-143.59°C)
= 243.59°C
Hence, the initial temperature of zinc sample is 243.59°C
Answer:
A: Helium or Hydrogen
Explanation:
Terrestrial planets are the 4 inner most planets of the solar system which are mercury, venus, earth, Mars, while the giant planets are the 4 outer most which are Jupiter, Saturn, Uranus and Neptune.
Now, these outer most ones are the surface ones and are surrounded primarily by layers of hydrogen and helium gases.
The bone tissue contains many small pauses this is most likely caused by osteoporosis.
<h3>What is osteoporosis?</h3>
Osteoporosis is a health condition that weakens bones, making them fragile and more likely to break.
Osteoporosis causes bones to become weak and brittle — so brittle that a fall or even mild stresses such as bending over or coughing can cause a fracture.
Osteoporosis-related fractures most commonly occur in the hip, wrist or spine.
Bone is living tissue that is constantly being broken down and replaced.
Hence, the bone tissue contains many small pauses this is most likely caused by osteoporosis.
Learn more about the osteoporosis here:
brainly.com/question/7246059?referrer=searchResults
#SPJ1
<span>orbital shell is the</span><span> the circular paths around the nucleus of an atom along which the electrons traverse.</span>
1) Chemical reaction: AgNO₃ + HCl → AgCl + HNO₃.
V(AgNO₃) = 30,0 mL = 0,03 L.
c(AgNO₃) = 0,225 mol/L.
n(AgNO₃) = 0,03 L · 0,225 mol/L.
n(AgNO₃) = 0,00675 mol.
From chemical reaction: n(AgNO₃) : n(HCl) = 1 : 1.
0,00675 mol : n(HCl) = 1 : 1.
n(HCl) = 0,00675 mol.
V(HCl) = n(HCl) ÷ c(HCl).
V(HCl) = 0,00675 mol ÷ 0,130 mol/L.
V(HCl) = 0,0519 L = 51,92 ml.
2) 1) Chemical reaction: AgNO₃ + KCl → AgCl + KNO₃.
V(AgNO₃) = 30,0 mL = 0,03 L.
c(AgNO₃) = 0,225 mol/L.
n(AgNO₃) = 0,03 L · 0,225 mol/L.
n(AgNO₃) = 0,00675 mol.
From chemical reaction: n(AgNO₃) : n(KCl) = 1 : 1.
0,00675 mol : n(KCl) = 1 : 1.
n(KCl) = 0,00675 mol.
m(KCl) = n(KCl) · M(KCl).
m(KCl) = 0,00675 mol · 74,55 g/mol.
m(KCl) = 0,503 g.
n - amount of substance.
M - molar mass.