Answer:
C.The added epitope disrupts the function of the tagged protein
Explanation:
When an additional sequence is tagged to a protein to use comercial antibodies, there are several reasons why this procedure wouldn't work as expected (note that we're assuming the protein is being expressed but it's not possible to detect it).
For example, the sequence of nucleotide added to codify for the tagged epitope are removed during the RNA processing. In that case, the protein would be expressed without the epitope, so it would be impossible to localize it with the antibodies.
Also, it could be that the new epitope is affecting some way the protein folding, making it not functional. This way, it would be degraded by the cell so it wouldn't be detected.
Another possibility is that the epitope doesn't affects the protein folding nor its function, but during the folding ends up in a conformation that makes it inaccesible for the antibody.
In summary, the way as the possible answers to this question are shown, the correct option seems to be C:<em> The added epitope disrupts the function of the target protein.</em>
Answer:
Kidney
Explanation:
Nephron is the basic unit of structure in the kidney
The question is incomplete. The complete question is:
Question: What is the expected percent change in the DNA content of a typical eukaryotic cell as it progresses through the cell cycle from the start of the G1 phase to the end of the G2 phase
a. -100%
b. -50%
c. +50%
d. +100%
Answer:
d. +100%
Explanation:
S phase comes between G1 and G2 phases of the interphase of a cell cycle. S phase of interphase includes replication of DNA. The process of DNA replication doubles the amount of DNA present in the cell. The newly synthesized DNA is accommodated in the sister chromatids of chromosomes. Therefore, a cell with 2C DNA in the G1 phase would have 4C DNA at the end of the G2 phase. So, there is a +100% increase in the DNA content of a cell as it proceeds from G1 to the end of the G2 phase.
And if and because or up down and below or above or beneath
Explanation:
There are a number of ways to produce hydrogen: Natural Gas Reforming/Gasification: Synthesis gas, a mixture of hydrogen, carbon monoxide, and a small amount of carbon dioxide, is created by reacting natural gas with high-temperature steam. The carbon monoxide is reacted with water to produce additional hydrogen.
As of 2020, the majority of hydrogen (∼95%) is produced from fossil fuels by steam reforming of natural gas, partial oxidation of methane, and coal gasification. Other methods of hydrogen production include biomass gasification and electrolysis of water.