Ozone in troposphere is also know as Bad Ozone, Evil Ozone and Ground Level Ozone.
I'm pretty sure its transverse waves
The original kinetic energy will be 0 J and the final kinetic energy will be 7500 J and the amount of work utilized will be similar to the final kinetic energy i.e., 7500 J.
<u>Explanation:</u>
As it is known that the kinetic energy is defined as the energy exhibited by the moving objects. So the kinetic energy is equal to the product of mass and square of the velocity attained by the car. Thus,

So the initial kinetic energy will be the energy exerted by the car at the initial state when the initial velocity is zero. Thus the initial kinetic energy will be zero.
The final kinetic energy is
= 7500 J
As the work done is the energy required to start the car from zero velocity to 5 m/s velocity.
Work done = Final Kinetic energy - Initial Kinetic energy
Thus the work utilized for moving the car is
Work done = 7500 J - 0 J = 7500 J
Thus, the initial kinetic energy of the car is zero, the final kinetic energy is 7500 J and the work utilized by the car is also 7500 J.
Hey there!
In this case, it is possible to solve this problem by using the widely-known steam tables which show that at 90 °C, the pressure that produces a vapor-liquid mixture at equilibrium is about 70.183 kPa (Cengel, Thermodynamics 5th edition).
Moreover, for the calculation of the volume, it is necessary to calculate the volume of the vapor-liquid mixture, given the quality (x) it has:

Thus, since 8 kg correspond to liquid water, 2 kg must correspond to steam, so that the quality turns out:

Now, at this temperature and pressure, the volume of a saturated vapor is 2.3593 m³/kg whereas that of the saturated liquid is 0.001036 m³/kg and therefore, the volume of the mixture is:

This means that the volume of the container will be:

Regards!
If you read the question carefully, you can find the answer right there in it.
In fact, you don't even have to read the whole question ... you only need to read one word.
In fact, you don't even have to read the whole word ... you only need to read part of the word.
The word to read is "wavelength".
The important part of the word is "length".
<em>Now</em> it's time to look at the picture:
#1 is a height.
#2 is a place on the wave
#4 is a place on the wave
<em>#3 </em>is the only thing in the picture that's a "length" of anything.