Protons:
- Have a mass
- Positively charged
- Found inside the nucleus of an atom
Electrons:
- Have a mass. (9.10938188×10−31 kilograms), though this can sometimes be considered negligible due to how small that actually is. Barely factored into atomic mass
- Negatively charged
- Found outside the nucleus in the electron shell
Neutrons:
- Have a mass
- Neutral (no charge)
- Found inside the nucleus of an atom
Atom A:
- 1 proton
- 0 Neutrons
- 1 electron
- Atomic mass of 1
- Atomic number of 1
Atom B:
- 8 Protons
- 10 Neutrons
- 8 electrons
- Atomic mass of 18
- Atomic number of 8
Atomic mass includes the number of protons and neutrons in the nucleus. Atomic number is the number of protons, as this is what defines what type of element the atom is.
Answer:
Hi ,
Answer:
A chemical energy is changed to a electrical energy
Answer is 0.289nm.
Explanation: The wt % of Fe and wt % of V is given for a Fe-V alloy.
wt % of Fe in Fe-V alloy = 85%
wt % of V in Fe-V alloy = 15%
We need to calculate edge length of the unit cell having bcc structure.
Using density formula,

For calculating edge length,

For calculating
, we use the formula

Similarly for calculating
, we use the formula

From the periodic table, masses of the two elements can be written


Specific density of both the elements are

Putting
and
formula's in edge length formula, we get
![a=\left [\frac{Z\left (\frac{100}{\frac{(wt\%)_{Fe}}{M_{Fe}}+\frac{(wt\%)_{Fe}}{M_{Fe}}} \right )}{N_A\left (\frac{100}{\frac{(wt\%)_V}{\rho_V}+\frac{(wt\%)_V}{\rho_V}} \right )} \right ]^{1/3}](https://tex.z-dn.net/?f=a%3D%5Cleft%20%5B%5Cfrac%7BZ%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B%28wt%5C%25%29_%7BFe%7D%7D%7BM_%7BFe%7D%7D%2B%5Cfrac%7B%28wt%5C%25%29_%7BFe%7D%7D%7BM_%7BFe%7D%7D%7D%20%20%5Cright%20%29%7D%7BN_A%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B%28wt%5C%25%29_V%7D%7B%5Crho_V%7D%2B%5Cfrac%7B%28wt%5C%25%29_V%7D%7B%5Crho_V%7D%7D%20%20%5Cright%20%29%7D%20%20%5Cright%20%5D%5E%7B1%2F3%7D)
![a=\left [\frac{2atoms/\text{unit cell}\left (\frac{100}{\frac{85\%}{55.85g/mol}+\frac{15\%}{50.941g/mol}} \right )}{(6.023\times10^{23}atoms/mol)\left (\frac{100}{\frac{85\%}{7.874g/cm^3}+\frac{15\%}{6.10g/cm^3}} \right )} \right ]^{1/3}](https://tex.z-dn.net/?f=a%3D%5Cleft%20%5B%5Cfrac%7B2atoms%2F%5Ctext%7Bunit%20cell%7D%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B85%5C%25%7D%7B55.85g%2Fmol%7D%2B%5Cfrac%7B15%5C%25%7D%7B50.941g%2Fmol%7D%7D%20%20%5Cright%20%29%7D%7B%286.023%5Ctimes10%5E%7B23%7Datoms%2Fmol%29%5Cleft%20%28%5Cfrac%7B100%7D%7B%5Cfrac%7B85%5C%25%7D%7B7.874g%2Fcm%5E3%7D%2B%5Cfrac%7B15%5C%25%7D%7B6.10g%2Fcm%5E3%7D%7D%20%20%5Cright%20%29%7D%20%20%5Cright%20%5D%5E%7B1%2F3%7D)
By calculating, we get

Answer:
3.6 times 10^4
Explanation:
Scientific notation is between 1-9. So, we move 36000 to 4 decimal places. SO it would be 3.6 times 10^4. Scientific Notation always has the base of 10 . Enjoy :)
Answer: 0.172 M
Explanation:
a) To calculate theconcentration of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

b) To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

The concentration of the phosphoric acid solution is 1.172 M