Missing in your question:
Picture (1)
when its an open- tube manometer and the h = 52 cm.
when the pressure of the atmosphere is equal the pressure of the gas plus the pressure from the mercury column 52 Cm so, we can get the pressure of the gas from this formula:
P(atm) = P(gas) + height (Hg)
∴P(gas) = P(atm) - height (Hg)
= 0.975 - (520/760)
= 0.29 atm
Note: I have divided 520 mm Hg by 760 to convert it to atm
Picture (2)
The pressure of the gas is the pressure experts by the column of mercury and when we have the Height (Hg)= 67mm
So the pressure of the gas =P(atm) + Height (Hg)
= 0.975 + (67/ 760) = 1.06 atm
Picture (3)
As the tube is closed SO here the pressure of the gas is equal the height of the mercury column, and when we have the height (Hg) = 103 mm. so, we can get the P(gas) from this formula:
P(gas) = Height(Hg)
= (103/760) = 0.136 atm
Answer:
No because water needs to have no salt
Explanation:
The answer is C. Isotopes.
Isotopes are defined as two substances that have the same number of protons and electrons, but a different number of neutrons, and therefore a different atomic mass. For example, carbon-12 and carbon-14 are isotopes of each other.
Hope this helps!
Answer:
Explanation:
From the given information:
The density of O₂ gas = 
here:
P = pressure of the O₂ gas = 310 bar
= 
= 305.97 atm
The temperature T = 415 K
The rate R = 0.0821 L.atm/mol.K
molar mass of O₂ gas = 32 g/mol
∴

= 287.37 g/L
To find the density using the Van der Waal equation
Recall that:
the Van der Waal constant for O₂ is:
a = 1.382 bar. L²/mol² &
b = 0.0319 L/mol
The initial step is to determine the volume = Vm
The Van der Waal equation can be represented as:

where;
R = gas constant (in bar) = 8.314 × 10⁻² L.bar/ K.mol
Replacing our values into the above equation, we have:



After solving;
V = 0.1152 L
∴

= 277.77 g/L
We say that the repulsive part of the interaction potential dominates because the results showcase that the density of the Van der Waals is lesser than the density of ideal gas.
Answer : The correct option is, 
Explanation :
The given element bromine belongs to the group 17 and period 4. The symbol of bromine is, Br.
The atomic number of bromine = 35
The total number of electrons present in bromine element = 35
Electronic configuration : It is defined as the arrangement of electrons around the nucleus of an atom.
Hence, the correct electronic configuration of bromine is,
