B
mass of solute - 4.0 g
mass of solution - 100g + 4.0g = 104g
4/104 = 0.03846
0.03846 • 100 = 3.8%
Three sig figs, the leading zeros are not sig figs
Answer:
c = 0.377 J/g.°C
c = 0.2350 J/g.°C
J = 27.3 J
Explanation:
We can calculate the heat (Q) absorbed or released by a substance using the following expression.
Q = c × m × ΔT
where,
c: specific heat
m: mass
ΔT: change in the temperature
<em>It takes 49.0J to raise the temperature of an 11.5g piece of unknown metal from 13.0°C to 24.3°C. What is the specific heat for the metal? Express your answer numerically, in J/g.°C</em>
Q = c × m × ΔT
49.0 J = c × 11.5 g × (24.3°C - 13.0°C)
c = 0.377 J/g.°C
<em>The molar heat capacity of silver is 25.35 J/mol.°C. How much energy would it take to raise the temperature of 11.5g of silver by 10.1°C? Express your answer numerically, in Joules. What is the specific heat of silver?</em>
<em />
The molar mass of silver is 107.87 g/mol. The specific heat of silver is:

Q = c × m × ΔT
Q = (0.2350 J/g.°C) × 11.5 g × 10.1°C = 27.3 J
Your body uses water in all its cells, organs, and tissues to help regulate its temperature and maintain other bodily functions. Because your body loses water through breathing, sweating, and digestion, it's important to re-hydrate by drinking fluids and eating foods that contain water.