The distance it falls is given by
x = (1/2)at^2
where a = acceleration due to gravity = 9.8 m/s^2
x = (1/2)(9.8)(18)^2
x = 1587.6 m
The answer is 1587.6 meters
Answer:
duty h gucuuvu h just hc i oicuxp o cut o icucj x uc jo 8cuc8c
We can use renewable sources
Answer:

the answer is A.
Explanation:
Using the laws of newton:
∑F = ma
where ∑F is the sumatory of forces acting in the system, m the mass and a the acelertion of the system.
Then, if the block is moving with constant velocity, its aceleration is equal to 0, so:
∑F = m(0)
∑F = 0
It means that:
F -
= 0
where F is the force applied and
is the friction force. Replacing the value of F, we get:
310N -
= 0
Finally, solving for
:

Answer:
The intensity of the electric field is

Explanation:
The electric field equation is given by:

Where:
- k is the Coulomb constant
- q is the charge at 0.4100 m from the balloon
- d is the distance from the charge to the balloon
As we need to find the electric field at the location of the balloon, we just need the charge equal to 1.99*10⁻⁷ C.
Then, let's use the equation written above.


I hope it helps you!