3 is the answer teeeeeeeeeheeeeeeeee
Answer:
The correct answer should be
A. 20 Joules
Explanation:
I'm taking the K12 Unit Test: Energy - Part 1 right now
Refer to the diagram shown below.
Because of symmetry, equal forces, F, exist between the sphere of mass m and each of the other two spheres.
The acceleration of the sphere with mass m will be vertical as shown.
The gravitational constant is G = 6.67408 x 10⁻¹¹ m³/(kg-s²)
Calculate F.
F = [ (6.67408 x 10⁻¹¹ m³/(kg-s²))*(m kg)*(2.8 kg)]/(1.2 m)²
= 1.2977 x 10⁻¹⁰ m N
The resultant force acting on mass m is
2Fcos(30°) = 2*(1.2977 x 10⁻¹⁰m N)*cos(30°) = 2.2477 x 10⁻¹⁰m N
If the initial acceleration of mass m is a m/s², then
(m kg)(a m/s²) = (2.2477 x 10⁻¹⁰m N)
a = 2.2477 x 10⁻¹⁰ m/s²
Answer:
The magnitude of the acceleration on mass m is 2.25 x 10⁻¹⁰ m/s².
The direction of the acceleration is on a line that joins mass m to the midpoint of the line joining the known masses.
Static Friction
It is the friction that exists between a stationary object and the surface on which it's resting.
Sliding friction
It is the resistance created by two objects sliding against each other.
Rolling friction:-
It is the force resisting the motion when a body rolls on a surface.
hope this helps x
Answer:
Explanation:
Frictional force can be defined as the force that is generated by two surfaces which are in contact with each other and even goes ahead to slide against each other. It can also be simply defined as a force that oppose the sliding of one object over the other
There are different types of frictional forces such as dry friction, lubricated friction, internal friction, fluid friction etc. One of the factors that affects frictional forces is that the forces are majorly affected by the surface texture and amount of force that bounds them together.