Answer:
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
Explanation:
initial veetical speed V₀y=0
Horizontal speed Vx = Vx₀= 3.80m/s
Vertical drop height= 3.90m
Let Vy = vertical speed when it got to the water downward.
g= 9.81m/s² = acceleration due to gravity
From kinematics equation of motion for vertical drop
Vy²= V₀y² +2 gh
Vy²= 0 + ( 2× 9.8 × 3.90)
Vy= √76.518
Vy=8.747457
Then we can calculate the velocity of the fish relative to the water when it hits the water using Resultant speed formula below
V= √Vy² + Vx²
V=√3.80² + 8.747457²
V=9.537m/s
The angle can also be calculated as
θ=tan⁻¹(Vy/Vx)
tan⁻¹( 8.747457/3.80)
=66.52⁰
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
Well it is definitely answer B because when light is on for a long time it heats up a lot.the thermometer obviously went up which means the light bulb had more energy and was hotter than the start of it
Darker colors absorb heat, While lighter colors don't. If a house is painted black in Arizona, The black color will absorb the heat making the temperature inside the house very hot even with the AC on. If a house in Arizona is painted White, The heat will bounce off the White color, making the temperature inside the house cooler.
Hope this helps!
Answer:6v
Explanation:
Current=0.30A
Resistance=20ohms
voltage=current x resistance
Voltage=0.30 x 20
Voltage=6v