Refer to the figure below.
R = resistance.
Case 1:
The voltage source is V₁ and the current is 10 mA. Therefore
V₁ = (10 mA)R
Case 2:
The voltage source is V₂ and the current is 8 mA. Therefore
V₂ = (8 mA)R
Case 3:
The voltage across the resistance is V₁ - V₂. Therefore the current I is given by
V₁ - V₂ = IR
10R - 8R = (I mA)R
2 = I
The current is 2 mA.
Answer: 2 mA
When gases, fluids, or other solids are in contact with a moving object
heat is produced due to friction.
Answer:
1500 mph
Explanation:
Take east to be +x and north to be +y.
The x component of the velocity is:
vₓ = 889 cos 0° + 830 cos 59°
vₓ = 1316.5 mph
The y component of the velocity is:
vᵧ = 889 sin 0° + 830 sin 59°
vᵧ = 711.4 mph
The speed is found with Pythagorean theorem:
v² = vₓ² + vᵧ²
v² = (1316.5 mph)² + (711.4 mph)²
v = 1496 mph
Rounded to two significant figures, the jet's speed relative to the ground is 1500 mph.
Answer:
The the linear speed (in m/s) of a point on the rim of this wheel at an instant=0.418 m/s
Explanation:
We are given that
Angular acceleration, 
Diameter of the wheel, d=21 cm
Radius of wheel,
cm
Radius of wheel, 
1m=100 cm
Magnitude of total linear acceleration, a=
We have to find the linear speed of a at an instant when that point has a total linear acceleration with a magnitude of 1.7 m/s2.
Tangential acceleration,


Radial acceleration,
We know that

Using the formula

Squaring on both sides
we get






Hence, the the linear speed (in m/s) of a point on the rim of this wheel at an instant=0.418 m/s
Answer:
In the Solar system, the Jovian planets are farther from the Sun. Majority of the extrasolar Jovian planets are closer to their stars. These are known as "Hot Jupiters". From the studies, the reason for the existence of massive Jovian planets to be closer to their star is found to be the gravitational interaction of these planets with other massive planets which pushes them closer to their stars. These planets are formed beyond the frost line initially but later on migrate inwards.