Answer:
The element argon is in column 8A and is a noble gas. Nobles gases are completely stable because their outershell is filled with all eight electrons. Argon has eight valence electrons.
Answer:
N2
Explanation:
Rate of effusion is defined by Graham's Law:
(Rate 1/Rate 2) = (sqrt (M2)/ sqrt (M1))
(Where M is the molar mass of each substance. )
Molar Mass of oxygen, O2, is 32 (M1).
Rate of effusion of O2 to an unknown gas is .935(Rate 1).
Rate 2 is unknown so put 1.
Solve for x (M2).
.935/1 = sqrt x/ sqrt32
.935 x sqrt 32 = sqrt x
5.29 = sq rt x
5.29^2 = 27.975 = 28
N2 has a molar mass of 28 so it is the correct gas.
"CH3CH2CH2CH2OH " is known by the name of "n-butanol" and "CH3CH(OH)CH3" is known by the name of "<span>Isopropyl alcohol". These two given products are basically alcohols. I hope that this is the answer that you were looking for and the answer has actually come to your desired help. Thanks for joining brainly and getting your questions solved.</span>
The equilibrium constant is found by [product]/[reactant]
If the equilibrium constant is very small, such as 4.20 * 10^-31, then that means at equilibrium there is very little product and a lot of reactant.
And likewise, if there is a lot of product formed, and very little reactant, then the K value will be very large, which tells us that it is predominantly product.
At equilibrium, for any reaction, there will always be some reactant and some product present. There cannot be zero reactant or zero product. Also keep in mind that the equilibrium constant is dependent on temperature.
At equilibrium, for your reaction, it is predominantly reactants.
Answer:
Density: The molecules of a liquid are packed relatively close together. Consequently, liquids are much denser than gases. The density of a liquid is typically about the same as the density of the solid state of the substance.
In a gas, the distance between molecules, whether monatomic or polyatomic, is very large compared with the size of the molecules; thus gases have a low density and are highly compressible. In contrast, the molecules in liquids are very close together, with essentially no empty space between them
I hope it helps you