Answer:
there's a link to answer
Explanation:
there's a link to answer in another's persons response it helps a lot just click on it
Force is the ability to cause masses to accelerate.
Without force, you could not make stuff accelerate.
If something was moving, you could not make it speed up, slow down, stop, or go in a different direction.
If a thing was not moving, you could not make it move at all.
Answer:
Change in momentum is 1.1275 kg-m/s
Explanation:
It is given that,
Mass of the ball, m = 274 g = 0.274 kg
It hits the floor and rebounds upwards.
The ball hits the floor with a speed of 2.40 m/s i.e. u = -2.40 m/s (-ve because the ball hits the ground)
It rebounds with a speed of 1.7 m/s i.e. v = 1.7 m/s (+ve because the ball rebounds in upward direction)
We have to find the change in the ball's momentum. It is given by :




So, the change in the momentum is 1.1275 kg-m/s
The induced emf in the loop is -1500 μ V or - 0.0015 V .
According to the question
A conducting loop in the form of a circle is placed perpendicular to a magnetic field of 0. 50 t.
i.e
Magnetic field (B) = 0. 50 T
Area of circle or loop =
Now,
The area of the loop decreases at a rate of 3. 0 × 10⁻³ m/s
i.e
dA = 3. 0 × 10⁻³ meter²
dt = 1 sec
As per the formula of Induced e.m.f in the loop
emf is dependent on number of turns of coil, shape of the coil, strength of magnet and speed with which magnet is moved. Emf is independent of resistivity of wire of the coil.

where A is the area of the loop.
Now ,
Substituting the values in the formula
e = - 0.0015 V
OR
e = -1500 * 10⁻⁶ V
e = -1500 μ V
Negative just signifies emf will such be induced that current induced will oppose change in magnetic field though it
To know more about induced emf here:
brainly.com/question/16764848
#SPJ4
Answer:
17280 J or 17.28 kJ
Explanation:
Given that the voltage drop,
U = U2 - U1
U = 9 - 6
U = 3V
Also, we're told that the current, I is equal to 20 mA with the discharge time, t being 80 hrs.
Converting the time from h oi urs to seconds, we have
t = 80 * 3600
t = 288000
Now, to find the energy needed, we're going to use the formula
w = pt, where p = U * I
p = 3 * 20*10^-3
p = 60*10^-3
w = 60*10^-3 * 288000
w = 17280 J or 17.28 kJ
Therefore, the total energy the battery delivers in the 80 hrs is 17.28 kJ