| Impedance | = √ [R² +(ωL)²]
R² = 6800² = 4.624 x 10⁷
(ωL)² = (2 · π · f · 2.3 · 10⁻³)²
= 2.0884 x 10⁻⁴ f²
| Z | = √[ (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²) ] = 1.6 x 10⁵
(1.6 x 10⁵)² = (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²)
(2.56 x 10¹⁰) - (4.624 x 10⁷) = 2.0884 x 10⁻⁴ f²
Frequency² = (2.56 x 10¹⁰ - 4.624 x 10⁷) / 2.0884 x 10⁻⁴
= 2.555 x 10¹⁰ / 2.0884 x 10⁻⁴
= 1.224 x 10¹⁴
= 122,400 GHz <== my calculation
11.1 MHz <== online impedance calculator
Obviously, I must have picked up some rounding errors
in the course of my calculation.
1) 4°C : It has the highest density as shown on the graph.
2) Water expands when it freezes, making it less dense than just water.
3) The ice would sink to the bottom, then the rest of the water would freeze as well, the entire lake/river/whatever will freeze eliminating the organisms that live there.
Moment of inertia of single particle rotating in circle is I1 = 1/2 (m*r^2)
The value of the moment of inertia when the person is on the edge of the merry-go-round is I2=1/3 (m*L^2)
Moment of Inertia refers to:
- the quantity expressed by the body resisting angular acceleration.
- It the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
The moment of inertia of single particle rotating in a circle I1 = 1/2 (m*r^2)
here We note that the,
In the formula, r being the distance from the point particle to the axis of rotation and m being the mass of disk.
The value of the moment of inertia when the person is on the edge of the merry-go-round is determined with parallel-axis theorem:
I(edge) = I (center of mass) + md^2
d be the distance from an axis through the object’s center of mass to a new axis.
I2(edge) = 1/3 (m*L^2)
learn more about moment of Inertia here:
<u>brainly.com/question/14226368</u>
#SPJ4
<span>Different materials expand and contract at different rates based on temperature. Just like if you leave a plastic bottle full of water in a freezer it will burst, but if you leave it partially full no problem.....Ok?Expansion joints do the same for bridges. There is a gap to allow for temperature related expansions and contractions. Sometimes you drive over bridges and roadways where this movement is constricted and you might notice a bumpy ride. Engineers can predict the variation of structural length based on span lengths and leave the necessary gaps.....btw, NICE QUESTION:)</span>