Answer:
y₀ = 10.625 m
Explanation:
For this exercise we will use the kinematic relations, where the upward direction is positive.
y = y₀ + v₀ t - ½ g t²
in the exercise they indicate the initial velocity v₀ = 8 m / s.
when the rock reaches the ground its height is zero
0 = y₀ + v₀ t - ½ g t²
y₀i = -v₀ t + ½ g t²
let's calculate
y₀ = - 8 2.5 + ½ 9.8 2.5²
y₀ = 10.625 m
The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)
Momentum would be the same before and after the collision
Before the collision:
Momentum of the single cart: 1 * 0.50 = 0.50
After the collision
velocity = 0.25m / s
1 * 0.25 + 1 * 0.25 =
0.25 * (1 + 1) =
0.25 * 2 =
0.50
Now new momentum will be 0.5
answer
the same before and after the collision
I believe the answer is "When a neutral atom looses an electron to another neutral atom, two charged atoms are created."