Answer:
The density of the copper is higher than aluminium. Hence it is heavier compared to aluminium conductors it requires strong structures and hardware to bear the weight. More ductile and has high tensile strength.
...
Aluminium & Copper properties.
Property Copper (Cu) Aluminium (Al)
Density (g/cm3) 8.96 2.70
Answer:
hsjeeieoj eu sou ku nahi u have UCC guide to buying it and I he was a temporary password for bees and u h ki tarah nahi to ye sab se jyada nahi hota nahi to kabhi bhi hai ki wo to sirf Tum nahi hota
You could just create a turn on green arrow. Have a button for pedestrians. The only way for them to turn is if they have a green arrow and the green arrow will only appear when pedestrians are stopped or finished walking and all cars are clear or fully stopped
Answer:
w=2.25
Explanation:
It is necessary to determine the maximum w so that the normal stress in the AB and CD rods does not exceed the permitted normal stress.
The surface of the cross-section of the stapes was determined:
A_ab= 10 mm^2
A-cd= 15 mm^2
The maximum load is determined from the condition that the normal stresses is not higher than the permitted normal stress σ_allow.
σ_ab = F_ab/A_ab
σ_allow
σ_cd = F_cd/A_cd
σ_allow
In the next step we will determine the static size: Picture b).
We apply the conditions of equilibrium:
∑F_x=0
∑F_y=0
∑M=0
∑M_a=0 ==> -w*6*0.5*6*0.75*F_cd*6 =0
==> F_cd = 2*w*k*N
∑F_y=0 ==> F_cd+F_ab - 6*w*0.5 ==>2*w+F_ab -6*w*0.5 =0
==> F_ab = w*k*N
Now we determine the load w
<u>Sector AB: </u>
σ_ab = F_ab/A_ab
σ_allow=300 KPa
= w/10*10^-6
σ_allow=300 KPa
w_ab = 3*10^-3 kN/m
<u>Sector CD: </u>
σ_cd = F_cd/A_cd
σ_allow=300 KPa
= 2*w/15*10^-6
σ_allow=300 KPa
w_cd = 2.25*10^-3 kN/m
w=min{w_ab;w_cd} ==> w=min{3*10^-3;2.25*10^-3}
==> w=2.25 * 10^-3 kN/m
<u>The solution is: </u>
w=2.25 N/m
note:
find the attached graph