Mierda me dices solo necesito puntos
Answer:
Step On: Your foot forces the clutch pedal down and then causes it to take up the slack. This, in turn, causes the clutch friction disk to slip, creating heat and ultimately wearing your clutch out.
Step Off: When the clutch pedal is released, the springs of the pressure plate push the slave cylinder's pushrod back, which forces the hydraulic fluid back into the master cylinder.
Answer:
the rate of increase of radius is dR/dt = 0.804 m/hour = 80.4 cm/hour
Explanation:
the slick of oil can be modelled as a cylinder of radius R and thickness h, therefore the volume V is
V = πR² * h
thus
h = V / (πR²)
Considering that the volume of the slick remains constant, the rate of change of radius will be
dh/dt = V d[1/(πR²)]/dt
dh/dt = (V/π) (-2)/R³ *dR/dt
therefore
dR/dt = (-dh/dt)* (R³/2) * (π/V)
where dR/dt = rate of increase of the radius , (-dh/dt)= rate of decrease of thickness
when the radius is R=8 m , dR/dt is
dR/dt = (-dh/dt)* (R³/2) * (π/V) = 0.1 cm/hour *(8m)³/2 * π/1m³ *(1m/100 cm)= 0.804 m/hour = 80.4 cm/hour
Answer:
Cement is largely made up of calcium oxide. Cement can harden in the gastrointestinal tract and cause obstruction. Inhaling cement dust can cause coughing, wheezing, and difficulty breathing. The best prevention is to avoid or limit contact with cement.
Explanation:
Answer:
16 seconds
Explanation:
Given:
C = 60
L = 4 seconds each = 4*4 =16
In this problem, the first 3 timing stages are given as:
200, 187, and 210 veh/h.
We are to find the estimated effective green time of the fourth timing stage. The formula for the estimated effective green time is:
Let's first find the fourth stage critical lane group ratio
, using the formula:


Solving for
, we have:
Let's also calculate the volume capacity ratio X,

X = 0.704
For the the estimated effective green time of the fourth timing stage, we have:
Substituting figures in the equation, we now have:
15.78 ≈ 16 seconds
The estimated effective green time of the fourth timing stage is 16 seconds