Answer: The net ionic equation for the cobalt-silver voltaic cell is 
Explanation: In cobalt-silver voltaic cell, one half of the cell consists of cobalt electrode immersed in
solution ( which means that
are present in the solution) and other half of the cell consists of the Ag electrode immersed in
solution ( which means that
is present in the solution)
The two electrodes are joined by the copper wire. The cobalt electrode acts as an anode and the silver electrode acts a cathode.
At anode, oxidation reaction takes place and at cathode, reduction reaction takes place.
At Anode : 
At Cathode: ![[Ag^+(aq.)+e^-\rightarrow Ag(s)]\times 3](https://tex.z-dn.net/?f=%5BAg%5E%2B%28aq.%29%2Be%5E-%5Crightarrow%20Ag%28s%29%5D%5Ctimes%203)
Net ionic equation: 
Explanation:
) If I have 4 moles of a gas at a pressure of 5.6 atm and a volume of 12 liters, what is the temperature? P PV = nRT. 5.6 (12)=460821) T.
C₈H₁₈ is a non-electrolyte
Why?
Electrolytes are substances that dissociate into ions when dissolved in water. In order to do that, they need to have bonds that are polar enough to be able to dissociate, and the ions formed need to be soluble in water.
C₈H₁₈ is a compound that has a low electronegativity difference between its atoms, making it to be a covalent compound where electrons are shared, and making it non-polar, and difficult to dissociate. Thus, it is a non-electrolyte.
One possible structure for C₈H₁₈ is attached below. It's called octane.
Have a nice day!
#LearnwithBrainly
Equilibrium will shift towards the products when temperature is decreased in an exothermic reaction of the formation of ammonia.
<h3>What is an exothermic reaction?</h3>
An exothermic reaction is a reaction in which heat content of the reactants is greater than the heat content of product.
In an exothermic reaction, heat is given off.
For an exothermic reaction in equilibrium, increasing temperature shifts equilibrium to the towards the left, towards the reactants.
On the other, equilibrium will shift towards the products when temperature is decreased.
Therefore, equilibrium will shift towards the products when temperature is decreased in the reaction of the formation of ammonia.
Learn more about exothermic reactions at: brainly.com/question/13892884
#SPJ1