Answer:
2Rb(s) + Sr^+(aq) → 2Rb^+ (aq) + Sr(s)
Explanation:
Rubidium has a more negative reduction potential (-2.98 V) compared to strontium (-2.89 V).
Hence, in a redox reaction involving rubidium and strontium, rubidium will be oxidized while strontium is reduced.
The balanced redox reaction equation is obtained from;
Oxidation half equation;
2Rb(s) ---->2Rb^+(aq) + 2e
Reduction half equation;
Sr^2+(aq) + 2e ----> Sr(s)
Overall reaction equation;
2Rb(s) + Sr^+(aq) → 2Rb^+ (aq) + Sr(s)
 
        
             
        
        
        
Answer : The three-dimensional structure of ethanol is shown below.
Explanation :
The ethanol molecule is made up of 2 carbon atoms, 6 hydrogen atoms and 1 oxygen atom.
The 3D representation is shown by solid, dash and wedge bonds.
Dash lines shows that the molecules are behind the plane.
Wedge shows that the molecules are above or front of the plane.
Solid line shows that the molecules are present on the plane.
The three-dimensional structure of ethanol is shown below.
 
        
             
        
        
        
Answer:
0.0554 moles of NaCl are produced from the reaction of 1.67*10²² molecules of Na₂CO₃ with excess HCl.
Explanation:
The balanced reaction is:
Na₂CO₃ + 2 HCl → 2 NaCl + CO₂ + H₂O
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- Na₂CO₃: 1 mole 
- HCl: 2 moles 
- NaCl: 2 moles 
- CO₂: 1 mole 
- H₂O: 1 mole
On the other hand, Avogadro's Number is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number applies to any substance.
In this case, you can apply the following rule of three: if 6.023*10²³ molecules of Na₂CO₃ are contained in 1 mole, 1.67*10²² molecules will be contained in how many moles?

amount of moles= 0.0277 moles
In this case, you can apply the following rule of three: if by stoichiometry 1 mole of Na₂CO₃ produces 2 moles of NaCl, 0.0277 moles of Na₂CO₃ will produce how many moles of NaCl?

amount of moles of NaCl= 0.0554 moles
<u><em>0.0554 moles of NaCl are produced from the reaction of 1.67*10²² molecules of Na₂CO₃ with excess HCl.</em></u>
 
        
             
        
        
        
Answer:
periosteum, compact bone, cancellous, bone marrow