Answer:
Structures are given below.
Explanation:
- Treatment of 2-bromo-2-methylbutane with KOH in ethanol will give elimination of HBr through E2 mechanism.
- H atoms adjacent to Br will be eliminated.
- 2-bromo-2-methylbutane has two possible adjacent H atoms that can be eliminated giving mixture of products.
- Product of this elimination reaction is alkene. Here saytzeff fule is followed during elimination. So most substituted alkene will be major product.
- Structure of alkenes are given below.
<span>Answer
is: activation energy of this reaction is 212,01975 kJ/mol.
Arrhenius equation: ln(k</span>₁/k₂) = Ea/R (1/T₂ - 1/T₁<span>).
k</span>₁<span> = 0,000643
1/s.
k</span>₂ = 0,00828
1/s.
T₁ = 622 K.
T₂ = 666 K.
R = 8,3145 J/Kmol.
1/T₁<span> = 1/622 K = 0,0016 1/K.
1/T</span>₂<span> = 1/666 K =
0,0015 1/K.
ln(0,000643/0,00828) = Ea/8,3145 J/Kmol · (-0,0001 1/K).
-2,55 = Ea/8,3145 J/Kmol · (-0,0001 1/K).
Ea = 212019,75 J/mol = 212,01975 kJ/mol.</span>
The answer is: Electrons are shared in each pi bond. If the pi bonds flip back and forth between the adjacent p-orbitals on the two sides of an atom, the shared electrons in the p-orbitals can become delocalized.
Hope this help