I think its mass of volume
Answer:
A. 30cm³
Explanation:
Based on the chemical reaction:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
<em>1 mol of calcium carbonate reacts with 2 moles of HCl to produce 1 mol of CO₂</em>
<em />
To solve this question we must convert the mass of each reactant to moles. With the moles we can find limiting reactant and the moles of CO₂ produced. Using PV = nRT we can find the volume of the gas:
<em>Moles CaCO₃ -Molar mass: 100.09g/mol-</em>
1.00g * (1mol / 100.09g) = 9.991x10⁻³ moles
<em>Moles HCl:</em>
50cm³ = 0.0500dm³ * (0.05 mol / dm³) = 2.5x10⁻³ moles
For a complete reaction of 2.5x10⁻³ moles HCl there are necessaries:
2.5x10⁻³ moles HCl * (1mol CaCO₃ / 2mol HCl) = 1.25x10⁻³ moles CaCO₃. As there are 9.991x10⁻³ moles, HCl is limiting reactant.
The moles produced of CO₂ are:
2.5x10⁻³ moles HCl * (1mol CO₂ / 2mol HCl) = 1.25x10⁻³ moles CO₂
Using PV = nRT
<em>Where P is pressure = 1atm assuming STP</em>
<em>V volume in L</em>
<em>n moles = 1.25x10⁻³ moles CO₂</em>
<em>R gas constant = 0.082atmL/molK</em>
<em>T = 273.15K at STP</em>
<em />
V = nRT / P
1.25x10⁻³ moles * 0.082atmL/molK*273.15K / 1atm = V
0.028L = V
28cm³ = V
As 28cm³ ≈ 30cm³
Right option is:
<h3>A. 30cm³</h3>
Atomic mass Cu = 63.546 a.m.u
63.546 g ---------------- 6.02x10²³ atoms
22 g --------------------- ??
22 x (6.02x10²³ ) / 63.546 => 2.08x10²³ atoms
hope this helps!
Answer:
Argon {Ar}
Explanation:
The noble gas used for a condensed electron configuration is the one before the element which you are configuring.
In this case, the element (Mn) is manganese
The noble gas that is before this element is Argon which is the row above it
so your configuration would be {Ar} 3d^5 4s^2