To get the molarity, you divide the moles of solute by the litres of solution.
Molarity
=
moles of solute
litres of solution
For example, a 0.25 mol/L NaOH solution contains 0.25 mol of sodium hydroxide in every litre of solution.
To calculate the molarity of a solution, you need to know the number of moles of solute and the total volume of the solution.
To calculate molarity:
Calculate the number of moles of solute present.
Calculate the number of litres of solution present.
Divide the number of moles of solute by the number of litres of solution.
Hey there!
Molar mass NaCl = 58.44 g/mol
Number of moles
n = mass of solute / molar mass
n = 59.76 / 58.44
n = 1.0225 moles of NaCl
Volume in liters:
270 mL / 1000 => 0.27 L
Therefore:
M = number of moles / volume ( L )
M = 1.0225 / 0.27
= 3.78 M
Hope that helps!
Answer:
for given question is 2.79 and
is 0.52
{i- vant hoff’s constant ; Kb- constant ; m molarity }
M = no. of moles of the solute present in one kg of solution
Let the weight of amount of solute be “w” and its molecular mass be “M”
Let the mass of the solvent in the given question be “x”




Rutherford theorized that atoms have their charge concentrated in a very small nucleus.
This was famous Rutherford's Gold Foil Experiment: he bombarded thin foil of gold with positive alpha particles (helium atom particles, consist of two protons and two neutrons).
Rutherford observed the deflection of alpha particles on the photographic film and notice that most of alpha particles passed straight through foil.
That is different from Plum Pudding model, because it shows that most of the atom is empty space.
According to Rutherford model of the atom:
1) Atoms have their charge concentrated in a very small nucleus.
2) Major space in an atom is empty.
3) Atoms nucleus is surrounded by negatively charged particles called electrons.
4) An atom is electrically neutral.