To solve this problem, we make use of the Binomial
Probability equation which is mathematically expressed as:
P = [n! / r! (n – r)!] p^r * q^(n – r)
where,
n = the total number of gadgets = 4
r = number of samples = 1 and 2 (since not more than 2)
p = probability of success of getting a defective gadget
q = probability of failure = 1 – p
Calculating for p:
p = 5 / 15 = 0.33
So,
q = 1 – 0.33 = 0.67
Calculating for P when r = 1:
P (r = 1) = [4! / 1! 3!] 0.33^1 * 0.67^3
P (r = 1) = 0.3970
Calculating for P when r = 2:
P (r = 2) = [4! / 2! 2!] 0.33^2 * 0.67^2
P (r = 2) = 0.2933
Therefore the total probability of not getting more than
2 defective gadgets is:
P = 0.3970 + 0.2933
P = 0.6903
Hence there is a 0.6903 chance or 69.03% probability of
not getting more than 2 defective gadgets.
Answer:
x = 2
Step-by-step explanation:
Multiply both sides by (x-5) and expand:
(x+4)/(x-5)*(x-5) = -2(x-5)
x+4 = -2x+10
Subtract 4 from both sides:
x+4-4 = -2x+10-4
x = -2x+6
Add 2x to both sides:
x+2x = -2x+6+2x
3x = 6
Divide both sides by 3:
3x/3 = 6/3
x = 2
Answer:
sorry but the question won't load i would love to help though
Step-by-step explanation:
Answer:
Its D. h(x) = 15x2 – 41x + 14
Step-by-step explanation:
Got it right on edge.
For part a: you just need to find how far the vertex has been moved from the origin, or the point (0,0). As the vertex is at the point (2,-3), it has been translated right 2 horizontally and down 3 vertically.
For part b: you use the info found in part a to create the equation in the form of y=A(x-h)^2+k. In this case, A =1, so you can ignore it. The h value is the horizontal distance the vertex has been moved. Since it has been moved right 2, this part of the equation would be (x-2). I know it seems like it should be plus 2, but values in parentheses come out opposite. For the k value, find the vertical shift, which is down3, or -3.
Now that you have h and k, substitute them back into the equation.
Your final answer for part b is: y=(x-2)^2 -3.