1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
3 years ago
6

Which of the following best explains why electroplating is a useful process in many industries?

Chemistry
2 answers:
UkoKoshka [18]3 years ago
8 0
Since I cannot find the choices, I will tell you some of the benefits of electroplating in different industries. You can compare these benefits with the choices you have and choose the best fit.

1- Forms a protective layer to protect the material from the conditions of the atmosphere as the corrosion

2- Improves the appearance of some inexpensive materials and makes them look more appealing

3- Can enhance the electrical conductivity of materials

4- electroplating of zinc-nickel or gold can survive high temperatures

5- Sometimes hardens the material

6- Increases the thickness of the material 
lapo4ka [179]3 years ago
3 0

Answer: A.

Explanation:  it makes some inexpensive materials look more appealing

You might be interested in
Calculate %ic of the interatomic bonds for the intermetallic compound al6mn. on the basis of this result, what type of interatom
pashok25 [27]

Answer : % ionic character is 0.20%

              Bonding between the two metals will be purely metallic.

Explanation: For the calculation of % ionic character, we use the formula

\% \text{ ionic character}= [1-e^{\frac{-(X_A-X_B)^2)}{4}}]\times(100\%)

where X_A & X_B are the Pauling's electronegativities.

The table attached has the values of electronegativities, by taking the values of Al and Mn from there,

X_{Al}=1.61

X_{Mn}=1.55

Putting the values in the electronegativity formula, we get

\% \text{ ionic character}= [1-e^{\frac{-(1.61-1.55)^2)}{4}}]\times(100\%)

                                               = 0.20%

Now, there are 3 types of inter atomic bonding

1) Ionic Bonding: It refers to the chemical bond in which there is complete transfer of valence electrons between atoms

2) Covalent Bonding: It refers to the chemical bond involving the sharing of electron pairs between 2 atoms.

3) Metallic Bonding: It refers to the chemical bond in which there is an electrostatic force between the positively charged metal ions and delocalised electrons.

In Al_6Mn compound, the % ionic character is minimal that is \sim0.20% and there are two metal ions present, therefore this compound will have metallic bonding.

8 0
3 years ago
It is observed that the atoms of hydrogen in gas discharge tube emit radiations whose spectrum shows line characteristics (line
azamat

Answer: the line Spectra of hydrogen lies between the ultra-violet, visible light and infra-red of the electro magnetic spectrum

Explanation:

Electromagnetic radiation spans an wide range of wavelengths and frequencies. This range is called the electromagnetic spectrum. The electromagnetic spectrum is generally divided into seven regions, in order of decreasing wavelength and increasing energy and frequency. The 7 regions includes; radio waves, microwaves, infrared (IR), visible light, ultraviolet (UV), X-rays and gamma rays.

lower-energy radiation, such as radio waves, is expressed as frequency while microwaves, infrared, visible and UV light are usually expressed as wavelength and finally, higher-energy radiation such as X-rays and gamma rays, is expressed in terms of energy per photon.

Therefore, hydrogen lies between the ultra-violet, visible light and infra-red region of the electro magnetic spectrum.

5 0
3 years ago
A covalent compound that shares two pairs of electrons.<br> What is it?
Nitella [24]
The two oxygen atoms share two pairs of electrons, so two covalent bonds hold the oxygen molecule together
3 0
3 years ago
What is the wavelength of light with 4.01 x 10^-19 J of energy? (The speed of light in a vacuum is 3.00 x 10^8 m/s, and Planck's
Vesna [10]

Answer:

D

hope it helps:)))!!!!!!

4 0
3 years ago
Flag this question question 8 10 pts use the δh°f and δh°rxn information provided to calculate δh°f for if: δh°f (kj/mol) if7(g)
GarryVolchara [31]

\Delta H\textdegree{}_f(\text{IF} \; (g)} = -95 \;  \text{kJ} \cdot \text{mol}^{-1}

Explanation

\text{IF}_7 \; (g) + \text{I}_2 \; (s) \to \text{IF}_5 \; (g) + 2\; \text{IF} \; (g)

  • \Delta H\textdegree{}_\text{rxn} = -89\; \text{kJ} \cdot \text{mol}^{-1}
  • \Delta H\textdegree{}_f (\text{IF}_7 \; (g) ) = -941 \; \text{kJ} \cdot \text{mol}^{-1} (from the question)
  • \Delta H\textdegree{}_f (\text{IF}_5 \; (g) ) = -840 \; \text{kJ} \cdot \text{mol}^{-1} (from the question)
  • As an the most stable allotrope under standard conditions, \Delta H\textdegree{}_f (\text{I}_2) = 0\; \text{kJ} \cdot \text{mol}^{-1}

By definition,

\Delta H\textdegree{}_\text{rxn} = \Delta H\textdegree{}_f (\text{all products})  - \Delta H\textdegree{}_f (\text{all reactants})

\Delta H\textdegree{}_f (\text{IF}_5 \; (g) ) + 2 \;  \Delta H\textdegree{}_f (\text{IF} \; (g) ) - \Delta H\textdegree{}_f (\text{IF}_7 \; (g) )  - \Delta H\textdegree{}_f (\text{I}_2 \; (s) ) \\  =  \Delta H\textdegree{}_{\text{rxn}}

\begin{array}{ccc} \Delta H\textdegree{}_f  (\text{IF} \; (g) )& = & 1/2\; ( \Delta H\textdegree{}_{\text{rxn}} - \Delta H\textdegree{}_f (\text{IF}_5 \; (g) ) + \Delta H\textdegree{}_f (\text{IF}_7 \; (g) )  + \Delta H\textdegree{}_f (\text{I}_2 \; (s) ) )\\ & = & 1/2 \; (-89 - (-840) + (-941))}\\ & = & - 95 \; \text{kJ} \cdot \text{mol}^{-1} \end{array}

Note, that iodine on the reactant side is stated as a gas in the equation given in the question whereas under standard conditions it is expected to be under the solid state; the \Delta H\textdegree{} _f given in the question seemingly corresponds to the one in which the reactant iodine exists as a solid rather than as a gas. Evaluating the last expression using data from an external source

\Delta H\textdegree{}_f (\text{I}_2 \; (g) ) = \Delta H\textdegree{}_f(\text{I}_2 \; (s)) + \Delta H\textdegree{}_{\text{sublimation}}(\text{I}_2) = 62.42 \;  \text{kJ} \cdot \text{mol}^{-1} (Cox, Wagman, et al., 1984)

... yields \Delta H\textdegree{}_f  (\text{IF} \; (g) )  \approx -64 \; \text{kJ}\cdot \text{mol}^{-1}, which deviates significantly from the experimental value of -94.76    \; \text{kJ}\cdot \text{mol}^{-1} (Chase, 1998.) It is thus assumed that the \Delta H\textdegree{}_\text{rxn} value provided requires a reaction with \text{I}_2 \; (s) rather than \text{I}_2 \; (g) as a reactant.

3 0
3 years ago
Other questions:
  • Which statement describes a chemical property of the element magnesium?
    6·1 answer
  • Which of the following elements have properties similar to those of astatine?
    14·2 answers
  • Katie blows up a balloon and ties it so there is a fixed amount of air in the balloon. She wraps a piece of string around the wi
    15·1 answer
  • Inside a volcano how do the slanted layers of hardened lava get there
    8·1 answer
  • The average American uses 156 gallons of water every day. If you lived in Africa you would have to walk to collect this water an
    12·1 answer
  • Earthquakes are vibrations of Earth's crust. Which of the following is used to
    15·1 answer
  • Value of MA is always lesser thàn 1 why?​
    5·1 answer
  • What separates the inner planets from the outer planets in our solar system?
    10·1 answer
  • How many joules of heat are given off when 5.00g of water cool from 348.0K to 298.0K?
    6·1 answer
  • How does the weather affect a dead body's temperature?​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!