Answer:
The function y = sec(x) shifted 3 units left and 7 units down .
Step-by-step explanation:
Given the function: y = sec(x)
- If k is any positive real number, then the graph of f(x) - k is the graph of y = f(x) shifted downward k units.
- If p is a positive real number, then the graph of f(x+p) is the graph of y=f(x) shifted to the left p units.
The function
comes from the base function y= sec(x).
Since 3 is added added on the inside, this is a horizontal shift Left 3 unit, and since 7 is subtracted on the outside, this is a vertical shift down 7 units.
Therefore, the transformation on the given function is shifted 3 units left and 7 units down
Emily earned $166 more in her account than Katie.
We use the compound interest formula for both of these:

For Katie's deposit:

This gives Katie 6083.26-5000 = 1083.26 in interest (1083, to the nearest dollar).
For Emily's deposit:

This means she earned 11248.64-10000=1248.64 in interest (1249, to the nearest dollar).
The difference in interest is given by 1249-1083=166
Answer:
Rs 120.
Step-by-step explanation:
10=0.85SP-CP; CP+10=0.85SP; SP=[CP+10]/0.85 Eq 1. Let SP= Selling Price and CP= Cost Price
-2 =0.75SP-CP; 0.75SP=C-2; SP=[CP-2]/0.75 Eq 2
[CP+10]/0.85=[CP-2]/0.75 : SP of Eq 1=SP of Eq 2
0.75[CP+10]=0.85[CP-2]
0.75CP+7.5=0.85CP-1.7
0.85CP-0.75CP=-1.7–7.5=9.2
0.10CP=9.2; CP=9.2/0.10
CP=Rs 92 Cost Price of pen
10=0.85SP-92; 0.85SP=92+10=102; SP=102/0.85=Rs 120 Marked Price of pen (answer)
From Eq2: -2=0.75SP-CP; 0.75SP=CP-2=92–2=90; SP=90/0.75=Rs120; -2=0.75(120)-CP; CP-2=0.75(120); CP-2=90; CP=90+2=Rs 92
Set CP of Eq 1=CP of Eq 2:
CP=0.85SP-10 from Eq 1; CP=0.75SP+2 from Eq 2;
0.85SP-10=0.75SP+2; 0.85SP-0.75SP=10+2=12
0.10SP=12; SP=12/0.10=Rs120 is the Marked Price(answer)
Normally, the Selling Price is the marked price. The seller will not disclose the Cost Price because it is the price when the item was acquired or procured, otherwise the buyer will ask for more discounts and based his buying price from the Cost Price if it is known. The calculated SP and CP satisfy both Eq 1 and Eq 2. Both Eq 1 and Eq 2 satisfy the given conditions of the problem above.
Answer:
Answer:
Step-by-step explanation:
1.)93.2F
2.)34.78°C
3.)26.67°C
4.)107.6°F
5.)64.4°F
I hope it's helpful!