In modern biology, there are three approaches to classifying organisms: systematics, cladistics and molecular evolutionary taxonomy. They are all based on organisms' relation to each other, but use different indicators to assign the degree of relationship
Answer:
Explanation:
We want the energy required for the transition:
CO 2
(
s
)
+
Δ
→
C
O
2
(
g
)
Explanation:
We assume that the temperature of the gas and the solid are EQUAL.
And thus we simply have to work out the product:
2
×
10^
3
⋅
g
×
196.3
⋅
J
⋅
g
−
1 to get an answer in Joules as required.
What would be the energy change for the reverse transition:
C
O
2
(
g
)
+
→
C
O
2
(
s
)
?
Answer:
The correct answer is in an exothermic reaction the energy of the product is less than the energy of the reactants.
Explanation:
Exothermic reaction is a type of reaction that generates heat.As a result in case of an exothermic reaction the energy of the reactant is more than the energy of the product.
That"s why the enthalpy change in an exothermic reaction is always positive .
Answer:
The entropy of the final solution decreases, as the reaction disorder is less.
Explanation:
The higher the temperature, the greater the heat of the reaction and the greater the disorder it has, so the entropy will increase ... But this is not the case, since the solution cools, decreasing the entropy proportionally.
Bit.my/3a8Nt8n here’s the link for the answer