1) Current in each bulb: 0.1 A
The two light bulbs are connected in series, this means that their equivalent resistance is just the sum of the two resistances:

And so, the current through the circuit is (using Ohm's law):

And since the two bulbs are connected in series, the current through each bulb is the same.
2) 4 W and 8 W
The power dissipated by each bulb is given by the formula:

where I is the current and R is the resistance.
For the first bulb:

For the second bulb:

3) 12 W
The total power dissipated in both bulbs is simply the sum of the power dissipated by each bulb, so:

Answer:
Option 3. The tennis ball began from rest and rolls at a rate of 14.7 m/s safer 1.5 seconds.
Explanation:
To know the the correct answer to the question, it is important that we know the definition of acceleration.
Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:
a = (v – u) /t
Where
a => acceleration
v => final velocity
u => Initial velocity
t => time
With the above information in mind, let us consider the options given in the question above to know which conform to the difinition of acceleration.
For Option 1,
We were told that the tennis ball has the following:
Distance = 4 m
Time = 1.5 s
This talks about the speed and not the acceleration.
Speed = distance / time
For Option 2,
We were only told about the average speed and nothing else.
For Option 3,
We were told that the tennis ball have the following:
Initial velocity (u) = 0 m/s
Final velocity (v) = 14.7 m/s
Time = 1.5 s
This talks about the acceleration.
a = (v – u) /t
For Option 4,
We were only told that the tennis rolls to the right at an average speed. This talks about the average velocity. We need more information like time to justify the acceleration.
From the above illustrations, option 3 gives the correct answer to the question.
Answer:
can exchange energy with its surroundings through heat and work transfer. In other words, work and heat are the forms that energy can be transferred across the system boundary.
Answer:
129.6 seconds
Explanation:
Given that :
α = 0.0002°c-1
θ1 = 20°C
θ2 = 5°C
Time t = one day ; Converting to seconds ; number of seconds in a day ; (24 * 60 * 60) = 86400 seconds
Let dT= change in time
Using the relation :
dT = 0.5* α * dθ * t
dθ = (20 - 5) = 15°C
dT = 0.5 * 0.0002 * 15 * 86400
dT = 129.6 seconds
Explanation:
m = kg. v=m/s. g=m/s^2. h= m
>>1/2mv^2=mgh
>>1/2mv^2=mgh>> kg*(m/s)^2= kg*m/s^2*m
>>1/2mv^2=mgh>> kg*(m/s)^2= kg*m/s^2*m>>kg m^2/s^2=kg m^2/s^2 the fraction 1/2 won't be able to make any changes to to the dimensional expression of energy i.e half of energy is still energy therefore you can neglect the number .
<u>>>kg m^2/s^2=kg m^2/s^2</u><u> </u>
<u>></u><u>></u><u>J</u>= J