1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
3 years ago
5

Help me ASAP!! Will give brainliest, five star, and heart!!

Physics
2 answers:
il63 [147K]3 years ago
5 0
I think it’s nephron
Gala2k [10]3 years ago
3 0

Answer:

ureter

Explanation:

....... ..............

You might be interested in
Which representation shows the relationship between resistance and the length of a wire?
dybincka [34]

Answer:

R∝L

Explanation:

7 0
3 years ago
A car drives 20 miles north and then 3 miles south. what is the displacement or the car
kobusy [5.1K]
An:
Displacement is 16.
5 0
3 years ago
Read 2 more answers
Which of the following scenarios would be optimal for obtaining a date from radioactive decay using these isotopes: 87Rb, 147Sm,
REY [17]

Answer:

a) 238U, 40K and 87Rb, b)   235U and to a lesser extent 40K , c)  he 235U,

d) possibility is 14C , e)this period would be ideal for 14C , f) 14C should be used since it is the one with the least average life time, even though the measurements must be very careful

Explanation:

One of the applications of radioactive decay is the dating of different systems.

To do this, the quantity of radioactive material in a meter is determined and with the average life time, the time of the sample is found.

Let's write the half-life times of the given materials

87Rb T ½ = 4.75 1010 years

147Sm T ½ = 1.06 1011 years

235U = 7,038 108 years

238U = 4.47 109 years

40K = 1,248 109 years

14C = 5,568 103 years

we already have the half-life of the different elements given

a) meteors. As these decomposed in the formation of the solar system, their life time is around 3 109 to 5 109 years, so it is necessary to look for elements that have a life time of this order, among the candidates we have 238U, 40K and 87Rb if these elements were at the moment of the formation of these meteors, there must still be rations in them, instead elements 14C already completely adequate

b) rock. The formation period is 4.20-108 years, therefore one of the most promising elements is 235U and to a lesser extent 40K since it is more abundant in rocks. The other elements with higher life times have not decayed and therefore will not give a true value and the 14C is completely decayed

c) volcanic ash. Formation time 6107 years, the only element that has the possibility of having a count is the 235U, the others have a life time so long that they have not decayed and the 14C is complete, unbent

d) scarp of an earthquake formation time 5 101 years, The only one that has any possibility is 14C even when it has declined very little, all the others, you have time to long that has not decayed

e) INCA excavation. The time of this civilization is about 10000 to 500 years (104 to 5 102 years), we see that this period would be ideal for 14C since it has some period of cementation, the others have not decayed

f) Tree in Blepharitis. 14C should be used since it is the one with the least average life time, even though the measurements must be very careful because of a period of disintegration. We have such a long time that they have not decayed

8 0
4 years ago
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 29.0 N is require
g100num [7]

Answer:

a. 145 N/m b. 1.29 Hz c. 1.62 m/s d.  0 m e. 13.2 m/s² f. ± 0.2 m g. 2.9 J h. 0.54 m/s i. 4.39 m/s²

Explanation:

a. The force constant of the spring

The spring force F = kx and k = F/x where k is the spring constant. F = 29.0 N and x = 0.200 m

k = 29.0 N/0.200 m = 145 N/m

b. The frequency of oscillations, f

f = 1/2π√(k/m)    m = mass = 2.20 kg

f = 1/2π√(145 N/m/2.20 kg) = 1.29 Hz

c. maximum speed of the object

The maximum elastic potential energy of the spring = maximum kinetic  energy of the object

1/2kx² = 1/2mv²

v = (√k/m)x where v is the maximum speed of the object

v = (√145/2.2)0.2 = 1.62 m/s

d Where does the maximum speed occur?

The maximum speed occurs at  0 m

e. The maximum acceleration

a = kx/m = 145 × 0.2/2.2 = 13.2 m/s²

f. The maximum acceleration occurs at x = ± 0.2 m

g. The total energy of the system is the maximum elestic potential energy of the system

E = 1/2kx² = 1/2 × 145 × 0.2² = 2.9 J

h. When x = x₀/3

1/2k(x₀/3)² = 1/2mv²

kx₀²/9 = mv²

v = 1/3(√k/m)x₀ = 1/3(√145/2.2)0.2 = 0.54 m/s

i When x = x₀/3

a = kx₀/3m =  145 × 0.2/(2.2 × 3)= 4.39 m/s²

8 0
3 years ago
What would happen to mass and accelaration if the force on an object increases?? please help.
kozerog [31]
Wouldn't mass stay the same and acceleration increase or am I mistaken?

6 0
3 years ago
Other questions:
  • 1 Point
    12·1 answer
  • How many times did john glenn orbit the earth
    8·1 answer
  • If the total number of earthquakes annually averages 14,500 approximately how many are magnitude 5 or higher? and show work.
    15·1 answer
  • A fancart of mass 0.8 kg initially has a velocity of < 0.8, 0, 0 > m/s. Then the fan is turned on, and the air exerts a co
    9·1 answer
  • A ball is thrown straight up with a launch of 3 m/s.
    12·1 answer
  • A 1.2-kg mass suspended from a spring of spring constant 22 N.m-1 executes simple harmonic motion of amplitude 5 cm. What is the
    15·1 answer
  • Calculate ideal work (in J) when a single stream of 1 mole of air is heated and expanded from 25 C and 1 bar to 100 C and 0.5 ba
    10·1 answer
  • A person running has a momentum of 720 kg m/s and is traveling at a velocity of 5 m/s. What is his mass?
    15·1 answer
  • Two solid spheres, one of radius R and mass M, the other of radius 2R and mass 8M, roll down an incline. They start together fro
    14·1 answer
  • PLEASE I NEED HELP
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!