Answer:
Flint glass is combination of silicon dioxide (SiO2) with lead or potassium. It creates a relatively high refractive index and high degree of light dispersing power compared to other types of glass.
Explanation:
:)
The formula we can use in this case is:
d = v0t + 0.5 at^2
v = at + v0
where,
d = distance travelled
v0 = initial velocity = 0 since at rest
t = time travelled
a = acceleration
v = final velocity when it took off
a. d = 0 + 0.5 * 3 * 30^2
d = 1350 m
b. v = 3 * 30 + 0
<span>v = 90 m/s</span>
Answer:
See the answers below.
Explanation:
The cost of energy can be calculated by multiplying each given value, a dimensional analysis must be taken into account in order to calculate the total value of the cost in Rs.
![Cost=0.350[kW]*12[\frac{hr}{1day}]*30[days]*4.5[\frac{Rs}{kW*hr} ]=567[Rs]](https://tex.z-dn.net/?f=Cost%3D0.350%5BkW%5D%2A12%5B%5Cfrac%7Bhr%7D%7B1day%7D%5D%2A30%5Bdays%5D%2A4.5%5B%5Cfrac%7BRs%7D%7BkW%2Ahr%7D%20%5D%3D567%5BRs%5D)
The fuse can be calculated by knowing the amperage.

where:
P = power = 350 [W]
V = voltage = 240 [V]
I = amperage [amp]
Now clearing I from the equation above:
![I=P/V\\I=350/240\\I=1.458[amp]](https://tex.z-dn.net/?f=I%3DP%2FV%5C%5CI%3D350%2F240%5C%5CI%3D1.458%5Bamp%5D)
The fuse should be larger than the current of the circuit, i.e. about 2 [amp]
Answer:
a. 1/1000 sec
Explanation:
Shutter speed is the length of time that the film you’re photographing is being exposed to the scene in film photography. However, in digital photography, shutter speed is the length of time that the image sensor sees the scene the photographer is trying to capture.
For shutter speeds, the greater the denominator the higher the speed and the lower the denominator, the lower the speed.
Thus, the fastest one is option A.
Answer:
Available energy = 35 x 10⁶ J
Explanation:
Given:
Amount of energy (Q) = 21 gj = 21 x 10⁹ J
Temperature T1 = 600 k
Temperature T0 = 27 + 273 = 300k
Find:
Available energy
Computation:
Available energy = Q[1/T0 - 1/T1]
Available energy = 21 x 10⁹ J[1/300 - 1/600]
Available energy = 35 x 10⁶ J